
Sample Final Report: Huffman Coding

Suhas Arehalli

COMP221 SP25— Arehalli

1 Introduction

Many computer applications involve transmit-
ting information over a network under circum-
stances the size of transmissions is limited, or
where larger transmissions are more costly. As a
result, the task of reducing the size of the trans-
mission used to represent some information —
data compression — is critical.

In some applications, like photo or video com-
pression, some amount of information loss is ac-
ceptable, since small changes in a photo or video
can be tolerated by the recipient. This is a use
case for lossy compression algorithms, which en-
code and decode messages with some acceptable
tolerance for deviance between the original and
decoded message. In other settings — for exam-
ple, text compression — small changes to the
data are unacceptable. In this second set of
cases, lossless compression algorithms — those
that enforce that the original and decoded mes-
sages are identical — are required.

Huffman Coding is one of these lossless data
compression algorithms. In practice, it operates
by assigning every symbol in the message (i.e., a
letter in a text compression setting) a variable-
length binary representation based on its relative
frequency within the space of possible messages.
This resulting code table is then used to encode
messages, with the guarantee that the length of
the average encoding is minimized.

2 Problem Statement

We must introduce some formal structure before
getting to the problem description:

A message is a string of symbols x1 . . . xn, with
each symbol drawn from some finite alphabet Σ
(i.e., xi ∈ Σ). We call the space of possible mes-
sages Σ∗.

Huffman coding is a type of compression
scheme that uses a code table: a one-to-one
map e : Σ→ {0, 1}∗ that gives us, for each sym-
bol in a string c ∈ Σ, a binary string e(c) that
encodes it. Since the map is one-to-one, each
symbol maps to a unique binary string to facili-
tate decoding.

To encode a text with a code table, we simply
map each symbol c to it’s corresponding binary
code e(c) and concatenate them together. For-
mally, if we let ⊕ represent string concatenation,
we have

e(x1 . . . xn) = e(x1)⊕ · · · ⊕ e(xn)

A code table e is called prefix-free if no symbol
has a code that is a prefix of some other symbol’s
code. Formally, for a code table e for an alphabet
Σ, ∀c1, c2 ∈ Σ where c1 ̸= c2, e(c1) is not a prefix
of e(c2). If a code table e is prefix-free, we have a
simple decoding algorithm: keep scanning until
we see a code that corresponds to a symbol in our
code table, and then decode that symbol (Alg.
??).

Now we can formally define the problem of
finding an optimal code table e for a given set of
symbols and their frequencies!

Problem Statement (Prefix-Free Coding).
Input: an alphabet Σ and a map from symbols
to frequencies f : Σ→ R
Output: a prefix-free coding table e such that
the expected length for the encoding of a message
x1 . . . xn,

E
[
|e(x1 . . . xn)|]

is minimized.

3 Huffman Coding

Huffman Coding models the process of assigning
prefix-free codes to symbols from our alphabet

1

Algorithm 1 A decoding scheme given a prefix-free coding table

function Decode(b1 . . . bn ∈ {0, 1}∗, e : Σ→ {0, 1}∗)
out← ε
current← ε
for i← 1 to n do

current← current⊕ bi
if exists c such that current = e(c) then

out← out⊕ c
end if

end for
end function

as building a binary tree where a symbol’s code
corresponds a path from the root to a special
leaf node representing that symbol. We derive
a binary code from the path by converting each
edge in that path to a 0 if it connects from a
parent to a left child, and a 1 if it connects a
parent to a right child. Since these paths are
always from a root to a leaf, a code can never be
a prefix of another, ensuring that the code table
corresponding to the tree is prefix-free.
Given that, we begin with a forest T = (V,E)

with vertices V = {(c, f(c)) | c ∈ Σ}, repre-
senting a symbol and its frequency, and E = ∅.
These will be the eventual leaves of our tree, so
we will iteratively merge them by creating in-
ternal nodes and assigning those internal nodes
the roots of two existing trees as children. Each
internal node represents all of the symbols repre-
sented by its children, so it’s frequency label will
be the sum of the frequency labels of its children.
Since leaves closer to the root will be assigned

shorter codes, we want to merge high-frequency
nodes as late as possible in hopes that they
end up close to our root. To achieve this, we
will adopt a greedy strategy, always selecting the
two lowest frequency subtrees remaining. Pseu-
docode is provided in Alg. ??.

4 A Worked Example

Consider the alphabet Σ = {a, b, d, f} with cor-
responding frequencies ca = 0.7, cb = 0.2, cd =
0.05, and cf = 0.05.

The algorithm would proceed as follows, sum-
marized in Figure ??: First, we construct a prior-
ity queue containing a tree for each symbol. This
queue will store the roots of our forest. Then we
merge the two lowest frequency characters, d and
f. We then repeat our greedy merging: d/f and
b, then a and b/d/f. This results in a full Huff-
man Coding tree. We then construct a coding
table from the tree, assigning a representation
of the path to the node labeled c ∈ Σ from the
root to e(c) using BuildCodeTable. This will
result in a getting the code 0, b getting the code
10, d getting the code 110, and f getting the
code 111.

Now we can measure the efficiency of the re-
sulting code table by computing the expected
length of the encoding of a string of length n.
We apply properties of the expectation E[·] to
find

E
[
|e(x1 . . . xn)|] = E

[n∑
i=1

|e(xi)|]

=

n∑
i=1

∑
c∈Σ

|e(c)|p(c)

= n(1(0.7) + 2(0.2) + 3(0.05) + 3(0.05))

= 1.4n

Thus, we expect a string of length n to have
an encoding of length 1.4n. Note that a sim-
ple fixed-length code would assign each of our 4
characters a 2-bit string, leading to an encoding

2

Algorithm 2 The Huffman Coding Algorithm

function Huffman(alphabet Σ, frequencies f : Σ→ R)
Let Q be a priority queue of nodes sorted by frequency.
For each c ∈ Σ, enqueue into Q a node with freq(n) = f(c) and label(n) = c
while |Q| > 1 do

l, r ← Q.removeMin(), Q.removeMin() ▷ Dequeue the 2 lowest frequency trees
Let n be a node with children l and r ▷ Merge
freq(n)← freq(l) + freq(r)
Enqueue n into Q

end while
root← Q.removeMin()
Let e be an empty code table.
return BuildCodeTable(root, ε, e) ▷ Convert the tree to a code table via a traversal

end function
function BuildCodeTable(Tree root, binary string b, Code table e)

if root has no children then
e(label(root))← b

end if
BuildCodeTable(leftChild(root), b⊕ 0, e)
BuildCodeTable(rightChild(root), b⊕ 1, e)

end function

a (0.70) b (0.20) d (0.05) f (0.05)

(a) Initial forest before any merges

a (0.70) b (0.20) d/f (0.10)

d (0.05) f (0.05)

0 1

(b) The forest after the first merge of d/f.

a (0.70) b/d/f (0.30)

b (0.20) d/f (0.10)

d (0.05) f (0.05)

0 1

0 1

(c) The forest after the second merge of b/d/f.

a/b/d/f (1.00)

a (0.70) b/d/f (0.30)

b (0.20) d/f (0.10)

d (0.05) f (0.05)

0 1

0 1

0 1

(d) The tree after the final merge.

Figure 1: The construction of the Huffman Coding tree in 3 merges.

3

of length n having length 2n, so on average, the
Huffman code is more efficient!

5 Runtime Analysis

Let n be the number of symbols in Σ. First ob-
serve that initializing our priority queue can be
done in O(n log n) time as written, but can be
done in O(n) time by an efficient heap construc-
tion algorithm (though this will not matter in
the end). The while loop will iterate n−1 times,
since a tree with n leaves has n−1 internal nodes.
Each iteration is dominated by removing 2 items
from our priority queue and inserting another,
each of which is O(log n), resulting in the while
loop taking O(n log n) time. Finally, Build-
CodeTable is simply a tree traversal, and thus
with O(n) nodes in the tree, will run in O(n)
time. Thus, the algorithm is dominated by the
while loop, resulting in a total O(n log n) time
complexity.

6 Proof of Correctness

Observe that the correctness of the decoding
algorithm follows directly from the code being
prefix-free. As a result, we’ll assume that en-
coding and decoding is lossless, and will instead
focus on proving the optimality of the resultant
coding table.

Statement. Let e be a prefix-free coding table
generated by the Huffman Coding algorithm. For
any prefix-free coding table e′,

E
[
|e(x1 . . . xn)|

]
≤ E

[
|e′(x1 . . . xn)|

]
We prove this via an exchange argument:

Proof. Since every prefix-free code can be repre-
sented by a binary tree of the sort constructed
during Huffman coding, we will prove that each
merge we make will construct a subtree of the
tree representing the optimal coding table.

Proceed by induction over merge decisions.

Base Case: Before the first iteration, all trees
are single leaves, and thus are all trivially sub-
trees of an optimal coding table’s tree represen-
tation.

Inductive Step: Assume via our inductive
hypothesis that all trees in our forest are subtrees
of an optimal coding table’s tree representation.
We will show the next merge will preserve this
property. To see this, assume for contradiction
that our merge of the two lowest frequency trees,
rooted at l and r, into a tree rooted at a node la-
beled l/r, is not a subtree of any optimal coding
tree.

Consider an optimal coding tree T ∗ that con-
tains both the subtrees l and r. Observe that
this optimal tree must exist given our inductive
hypothesis, and does not merge l/r given the as-
sumption we made for contradiction. Let x be
the subtree that was merged with l in T ∗. Now
we construct the tree T ′∗ by exchanging the po-
sitions of the subtrees rooted at x and r. We
claim that this tree will be just as optimal, if
not more optimal than T ∗. This construction is
schematized in Fig. ??.

To confirm this claim, we’ll show that our ex-
change maintains or lowers the expected encod-
ing length. Let fr, fx represent the total proba-
bilities (i.e., normalized frequencies) of the char-
acters rooted at r and x respectively and let
dr, dx represent the depth of the root of each of
the subtrees in T ∗. Since leaves’ positions within
subtrees are unaffected by the swap, let dnc rep-
resent the depth of the leaf containing charac-
ter c ∈ Σ within the subtree rooted at n. It
follows that the length of the code of a charac-
ter c under subtree rooted at r in T ∗ is dr + drc .
Since we swap the positions of r and x in T ′∗, the
length of that same character would be dx + drc
using T ′∗. Finally, let e and e′ be the encoding
tables represented by T ∗ and T ′∗ Now we com-
pute the difference in expected string lengths,
∆E = E

[
|e(x1 . . . xn)|

]
−E

[
|e′(x1 . . . xn)|

]
. Since

the only characters whose codes change are those

4

. . .

...

r (fr)

. . .

...

l/x (fl + fx)

l (fl)

. . .

x (fx)

. . .

(a) The tree T ∗, pre-exchange

. . .

...

x (fx)

. . .

...

l/r (fl + fr)

l (fl)

. . .

r (fr)

. . .

(b) The tree T ′∗, post-exchange

Figure 2: A diagram of the structure of our exchange at the step where we merge l and r

in the subtrees labeled r and x, this will be

∆E
n

=
∑
c∈Σ

under x

(|e(c)| − |e′(c)|)p(c)

+
∑
c∈Σ

under r

(|e(c)| − |e′(c)|)p(c)

=
∑
c∈Σ

under x

(dx + dxc − dr − dxc)p(c)

+
∑
c∈Σ

under r

(dr + drc − dx − drc)p(c)

= (dx − dr)
∑
c∈Σ

under x

p(c)

+ (dr − dx)
∑
c∈Σ

under r

p(c)

Since the frequency of a node n is the sum of all
of the frequencies of the characters under that
node, and p(c) is proportional to its f(c), we
know fn ∝

∑
c∈Σ

under n
p(c) for every node n. This

gets us

∆E
n
∝ (dx − dr)fx + (dr − dx)fr

∝ fxdx − fxdr + frdr − frdx

And so e′, the encoding table derived from T ′∗ is
has a smaller or equal expected encoding length
if fxdx − fxdr + frdr − frdx ≥ 0

To show this, we make 2 claims: First, that
fr ≤ fx. This follows from the fact that we
adopt a greedy strategy for merges, and selected
l and r before x. Second, we claim that dr ≤ dx.
This follows from the fact that r is merged into
the binary tree T ∗ after l and x are merged; At
the earliest, l/x was immediately merged with r,
making the depth of dr ≤ dx − 1. Given these
two inequalities, we have that

(fx − fr)(dx − dr) ≥ 0

fxdx − frdx − fxdr + frdr ≥ 0

And thus the expected string length from an en-
coding given T ′∗ is less or equal to than that
given T ∗. However, since T ∗ was constructed
to be an optimal coding tree, this contradicts
the fact that we assume no optimal coding tree
would allow our merges up to l and r. Thus, an
optimal solution contains all prior merges plus
one merging l and r.

To conclude, we observe that after we con-
struct a single tree, the optimal solution must
include that full tree as a subtree, and thus our
tree must represent an optimal coding table.

5

