
Homework 1

COMP221 Spring 2024 - Suhas Arehalli

Complete the problems below. Note that point values are roughly inversely correlated with
expected difficulty.

• Write up your solutions to all parts of this homework so that they may be exported to a
typeset PDF (using LaTeX with a tool like Overleaf is strongly recommended).

• You’ll submit this assignment through Moodle.

• The due date for this assignment will be posted on the course website.

• If you discuss problems with other students, list their names at the top of your assignment
(there will be no penalty for this — it’s encouraged!).

• However, don’t look at other group’s written solutions, or share your written solutions with
other groups. Consult the syllabus for more details on academic integrity policies! You should
make sure your groups are sharing approaches to a problem, not full solutions.

Problems

1. Ignoring coefficients (15pts): In COMP128, we learned that we can drop constant coefficients
in time complexities for Big-O notation. A version of this claim can be written formally as the
following: if f(n) ∈ Θ(g(n)), kf(n) ∈ Θ(g(n)) for k > 0. Prove this to be correct using the
c, n0 definition of big-Θ!

HINT: Try and generalize from more concrete examples. Is 3n ∈ O(n)? Is 3n2 ∈ O(n2)?
What about 9n2? Can you see a way to construct the c and n0 to prove 9n2 ∈ O(n2) from the
c′ and n′

0 that show 3n2 ∈ O(n2)?

2. Counting for Quadratics (10pts) In class we motivated all of our Big-O formalisms by stating
our desire to be a bit lazy in talking about time complexity. Accordingly, in class, I was often
actively sloppy when counting simple operations of n2 sorts. In these kinds of nested-loop
algorithms, we typically get a time complexity of the form

f(n) = a1n
2 + a2n+ a3

where a1, a2, a3 ∈ Z (i.e., they’re integers) and a1 > 0 — a quadratic function with a positive
n2 term! My claim is that if I’m sloppy with counting operations, this will affect the values
of a1, a2, and a3, but these differences won’t result in a time complexity growth function of a
different form (convince yourself this is true!).

1

Prove that for any integers a1 > 0, a2, a3 that f(n) ∈ Θ(n2) using the c, n0 definition
of big-O and big-Ω. You may use either definition of big-Θ we discussed. If helpful, you may
assume that f(n) > 0 for all n > 0.

HINT: Try and get the quadratic to be something easily factorable. Try by cases: If a3 = 0, if
a3 > 0, or if a3 < 0. Use the tricks we found in class.

3. Polynomials of Higher Degree (5pts) Of course, the above only shows that this works for
quadratic time algorithms. Let’s extend it to all polynomials: Show that if

f(n) =

k∑
i=0

ain
i

= akn
k + · · ·+ a1n+ a0

for some ai ∈ Z, then f(n) ∈ O(nk). Use the c, n0 definition of big-O. Note I’m only asking for
big-0 here, not big-Θ!

HINT: We’ll need a slightly different strategy (one more general than the small bounding trick

I suggested for quadratics). Consider c =
∑k

i=0 |ai|. Can you see a way to show cnk ≥ f(n) for
all n ≥ some n0?

Page 2

