
Homework 3

COMP221 Spring 2025 - Suhas Arehalli

Complete the problems below. Note that point values are roughly correlated with effort, but
inversely correlated with expected difficulty. Check the course website & syllabus for further in-
structions.

If any problem is unclear, or you think you found a typo, please let me know ASAP so I can
clarify!

Problems

1. An Even Quicker Return to Sorting (20pts)

Let’s develop a new kind of sorting algorithm, based on the following idea:

Suppose you only need to sort strings. A string s of length k can be written as c1c2 . . . ck, where
each c is a letter of the alphabet Σ.1. Note that:

• Letters are totally ordered (i.e., for any pair of characters, we know which appears first
alphabetically - think Comparable in Java).

• Strings are typically sorted under lexicographic order (“alphabetical” order), which you
get by first comparing the first letter, and if they match, you break the tie by comparing
the second letter, and so on.

With this, we have a fairly neat sorting strategy for an Array A of strings: For each letter in
the alphabet c ∈ Σ, gather all of the strings in an Array A that have c as their first letter
together. You then know where these strings belong in a sorted version of A relative to strings
with different initial first letters (all words that start with a come before words that start with
b, etc.), but you don’t know where they belong relative to each other (i.e., you haven’t sorted
the group of words that start with a amongst themselves!). Of course, you can sort all elements
with the same first letter by making a recursive call that sorts each subarray that begins with
the same first letter by the second letter!

(a) (0 points) Get comfortable with the idea presented above by applying it to a list of strings.
Work out the finer details before moving on.

(b) Turn this idea into a piece of pseudocode for a function called PrefixSort(Array A) that
uses a helper function PrefixSort(Array A, Integer i, Integer low, Integer high) that
sorts A[low . . . high] based on the ith character in each string. Perform this sort in-place,
only manipulating A by Swap-ing the positions of elements. You may assume that

1We call the set of elements in an alphabet Σ as is conventionally done in, say Theory of Computation, but that
means we need to be careful not to confuse this with summation notation!

1

• A has length n

• All strings have length ≤ k for some k ∈ N
• Strings s with length k′ < k are padded with the null character ∈ Σ such that for
k′ < m ≤ k, s[m] = . You may refer to k freely in your pseudocode.

• Σ = { , a, b, . . . , z}
• That the letters are ordered such that < a < b < · · · < z

All of this padding/ business exists so that we can sort strings of different lengths, and
to ensure that shorter strings that are prefixes of longer strings appear first. i.e., duck
precedes ducks, and this is enforced mathematically by padding d-u-c-k as d-u-c-k- , and
then noting that < s (the null character comes before the letter s, any any other letter
for that matter!). (8pts)

(c) Write a recurrence relation for the time complexity T (k, n) for this function, assuming an
average-case where each input array always has a roughly equal distribution of first letters.
Note that the time complexity is dependent on two factors (like you saw with graphs) —
the max-length of the strings k, and the length of the array n. (6pts)

(d) Consider (informally) the time complexity in the worst case, as opposed to the average-
case in the previous part, using a recurrence tree. How much work is done at each level?
What is the height of the tree? Propose a worst-case time complexity in Big-O notation.
(6pts)

Hint: How does k play into this? On a similar note, how does i change in each
recursive call?

2. Searching for Sorted Lists (20pts)

Let’s think about sorting a bit differently — as a variant of the search problem! Let PA be a
set that contains all permutations p of the n elements within an Array A. That is, we have n
elements which we can shuffle into any order; PA is a set that contains every possible ordering
of those n elements, with each unique ordering called a permutation of those n elements.

For example, for A = [3, 1, 2], PA = {[1, 2, 3], [1.3.2].[2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}.
Here’s our scenario for this search-for-sorting problem: At the start, we only know nothing about
the relative ordering of A[1], . . . , A[n]. But, we can pick two values A[i] and A[j], 1 ≤ i, j ≤ n
with i ̸= j and call the method Compare on them, and Compare will then return whether
A[i] < A[j].

For example, if A = [3, 1, 2] as above, Compare(A[1], A[3]) returns False because 3 ≮ 2.

Each time we call Compare, we will narrow the space of possible permutations of A that can
be in proper sorted order. Our question will be simple: How many comparisons must you do
to find the sorted permutation?

Our goal is to eventually prove what was promised in class, that comparison-based sorting (i.e.,
and sort that orders elements by relying on calls to Compare) is Ω(n log n). We’ll do this
by showing that even with an (impossibly) good comparison-based sorting algorithm, we can
construct a worst-case input that takes order n log n time.

(a) What is |PA|? Or, equivalently, how many permutations are there of n elements? (3pts)

Page 2

(b) Suppose that each element in A is unique. Prove that for each permutation of A p(A) =
[A[p1], . . . , A[pn]] ∈ PA, with p1, . . . , pn representing the indices of A in some shuffled order,
there exists some A such that p(A) is sorted. That is, show that for some shuffled set of
indices 1 ≤ p1, . . . , pn ≤ n, there exists some A of length n such that [A[p1], . . . , A[pn]] is
sorted. (7pts)

For example, if n = 3, the permutation p(A) = [A[3], A[1], A[2]] has a corresponding array
A = [2, 3, 1] that makes the permutation order sorted. Show that this holds in general, for
any n and any permutation p(A) ∈ PA.

HINT: Prove this is true by construction: Show how you can build A such that that
initial array will always result in the the permutation being sorted!

(c) Note that under our scheme, Compare is the only way for us to understand the contents
of A. By the prior part, we know that any permutation in PA could correspond to the
sorted solution. Suppose we run Compare(A[i], A[j]) once for some indices i, j and it
returns true. Can we rule out any permutations p(A) ∈ PA? Characterize precisely the
permutations that cannot be sorted (i.e., describe the property of p(A)s in PA that tells
us that p(A) can’t be sorted once we have the result from Compare). Suppose that
Compare returned false — what permutations can’t be sorted now? (4pts)

(d) Now let’s get to our actual search-for-sorting argument. We are doing a worst-case analysis
for an impossibly good comparison-based sorting algorithm. This means that we are in the
following game-like scenario: We pick an i and j to Compare, and our nemesis will pick the
worst possible A for this circumstance (i.e., one such that Compare will return the value
that will minimize the number of permutations we can eliminate from the running using our
logic from the prior part). Given this set-up, what is the greatest number of permutations
we could possibly hope to remove from the running with one call to Compare? (3pts)

Hint: Think Binary Search.

(e) Assuming that you can always pick i, j to eliminate the number of permutations you gave
in the last part, how many calls to Compare do we need, at minimum, to find the right
permutation? Explain, and then express this in terms of a big-Ω w.r.t. n. (2pts)

Warning: Remember that n is the length of the array, not the size of PA (look at
your answer to part 1 of this question!).

Hint: You may need to use an identity from the textbook to reduce the order of the
time complexity you found.

(f) If all of the above is true, and all that you showed in the previous problem are true, there
should be something that appears contradictory on first glance (double check your answers
if not!). Explain why there isn’t actually a problem here. (1pt)

Page 3

