
Homework 4

COMP221 Spring 2025 - Suhas Arehalli

Complete the problems below. Check the course website & syllabus for further instructions.
If any problem is unclear, or you think you found a typo, please let me know ASAP so I can

clarify!

Problems

1. Making Change

Suppose you are a cashier making change for a customer. Consider the following problem
description for the problem of providing change with the fewest number of coins:

PROBLEM (Minimal Change Set).
Input: k ∈ Z, a number of cents, and C = {c1, . . . cn} ⊆ Z+.

Output: A multi-set (set that allows duplicates) L such that

• ∀c ∈ L, c ∈ C

•
∑

c∈L c = k

• |L| is minimized.

if such a set exists. NULL otherwise.

That is, I need you to find the fewest possible coins such that the values of those coins add up
to k.

You might have seen in Discrete Math that a greedy strategy — adding the largest coin that
doesn’t go over k — works for US coin denominations (i.e., the case where C = {1, 5, 10, 25}.
In fact, you can prove this correct using a clever, but tedious exchange argument.

(a) Prove via counterexample that the greedy strategy will not work for all sets of coin denom-
inations C. That is, construct C such that the greedy approach fails to find the minimal
choice of coins.

(b) Describe the solution to this problem in terms of a recurrence relation. For simplicity,
write a solution that finds the size of the optimal set rather than constructing the set
itself.

HINT: Think carefully about how to frame the problem as a sequential decision
process. It may be helpful to think about a way to avoid the mistake a greedy algorithm
makes on your counterexample in the prior part, or to consider the subset sum problem.

1

(c) Provide pseudocode for a dynamic programming algorithm that computes the minimum
number of coins needed to make k units of change that works for any coin system. For
full points, provide a solution that runs in O(k|C|) time and O(k) space. A solution with
a worse space complexity can still get the majority of points.

2. Degree-Constrained Spanning Trees (Based on Skiena 11-12)

(a) The low-degree spanning tree problem (Low-Degree-Span) is a decision problem defined
as follows:

PROBLEM (Low-Degree-Span).
Input: An undirected graph G = (V,E) and k ∈ Z≥0

Output: TRUE iff there exists a spanning tree where each vertex in the tree has degree
≤ k. FALSE otherwise.

Prove (using a Karp reduction) that Low-Degree-Span is NP-hard. Make sure you
provide both a description of the reduction and a brief justification of the correctness of
the reduction as part of your answer.

Hint: Skim through the NP-hard problems we’ve seen so far and see which ones
seem most similar. Then try and construct a reduction in the appropriate direction.

(b) Consider the high-degree spanning tree problem (High-Degree-Span) which is defined as
follows:

PROBLEM (High-Degree-Span).
Input: An undirected graph G = (V,E) and k ∈ Z≥0.

Output: TRUE if G contains a spanning tree which contains a vertex with degree ≥ k
(within the spanning tree). FALSE otherwise.

Show that High-Degree Span is in P by providing pseudocode for a polynomial-time
algorithm to solve this problem.

Hint: Consider methods we’ve seen before that have you construct spanning trees
in a graph!

Page 2

