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So far, we’ve talked about analyzing the time complexity of algorithms: Once I have a solution
to a problem, I want to figure out how fast that solution is. However, when designing an algorithm,
it’s almost always useful to know whether algorithms of a particular time complexity is possible. A
little more flippantly, a designer of algorithms will often ask: Are there no faster solutions to
this problem, or am I just bad at algorithmic design?

Amongst other things, a theory computational complexity theory will help us answer this ques-
tion by giving us a way to talk about the (relative) difficulty of problems, with difficulty defined in
terms of the time complexity of the best solutions to the problem.

In an ideal world, we would be able to develop techniques to prove formally that fast solutions
don’t exist for a problem we’re working on. This would allow us to throw in the towel on finding a
fast solution and begin to apply some heuristic search techniques or start looking toward approx-
imate solutions. Unfortunately, the world is not (yet) ideal, and we will instead have to settle for
a weaker kind of claim — that as of now no algorithms researcher has been able to find a fast
algorithm, and that a $1,000,000 prize lies in wait for the first person to find one.

1 Preliminaries

As the introduction stated, we are building a theory of the difficulty of a problem, and we say a
problem’s difficulty is measured in terms of how fast it can be solved. However, we note that it is
really hard to prove that a faster solution doesn’t exist — there really aren’t many generalizable
techniques we have to show that!

As a result, we’re actually going to develop a theory of relative difficulty. We want to show that
a problem is just as hard, if not harder than another. This, it turns out, is going to be something
that is not too hard to demonstrate in practice!

In order to make our lives easier, we’re also going to restrict the kind of problem we consider
when doing reductions. Many problems we’ve looked at so far are what we call search problems (i.e.,
find an object that satisfies some conditions) or optimization problems (i.e., find the best object
that satisfies some conditions). These are interesting, but because they all deal with different
kinds of objects (paths, trees, arrays, sets, integers, etc.), they’re hard to relate. Instead, for the
purposes of complexity theory, we’ll analyze decision problems, problems whose answer is either
true or false. As you read the next section, consider how a theory of reductions as we describe
it would be overcomplicated if we considered functions with non-boolean outputs. Rest assured,
decision problems can be made to capture the richness of corresponding search and optimization
problems, as we’ll see.
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The last preliminary is in regard to how we define difficulty. For reasons that we aren’t able to
get into in this course, it is conventional to think about broader time complexity classes than we
do when analyzing particular algorithms. Rather than distinguishing between algorithms that run
in O(n), O(n log n), O(n2), and so on, we tend to think of algorithms in terms of those that run
in polynomial time (i.e., O(nk) for some k) and those that don’t. We typically call polynomial
time algorithms tractable to indicate that polynomial time solution are those that are practically
usable on large problem instances.

2 Reductions

Recall that we’d like to claim that some problem instance, ProbA is as hard, if not harder than
ProbB. Since we’ve decided to say a problem is hard if it’s not solvable in polynomial time, what
we mean formally is something along the lines of “If ProbB is not solvable in polynomial time,
then ProbA is not solvable in polynomial time.”

It turns out we can make this claim via a proof technique called a Reduction. The specific
kind of reduction we consider here is called a Karp Reduction, or a polynomial-time Many-to-One
reduction, though the distinction is not critical for this class, where this is the only kind of reduction
we’ll see.

Def. We say that ProbA reduces to ProbB when we can write an algorithm A that solves
ProbA that can be written as follows:

function A(X)
Convert X to a problem instance of ProbB, Y , in polynomial time
return B(Y )

end function

where B is any algorithm that solves problem B.

Now we can make 2 claims:

Statement 1 (Easiness Reduction). If ProbA reduces to ProbB and ProbB can be solved in
polynomial time, then ProbA can be solved in polynomial time

Proof. Let B be a polynomial time algorithm that solves ProbB. Construct A as in the definition
of the reduction. Since B and the conversion both run in polynomial time, A runs in polynomial
time. Since A solves ProbA, ProbA can be solved in polynomial time.

This result follows from our standard algorithmic analysis procedures: The idea of a reduction
lets us construct a solution to ProbA from any solution to ProbB, and so, given a polynomial
time solution to ProbB, we apply that template and build a polynomial time solution to ProbA.
Here’s a second claim:

Statement 2 (Hardness Reduction). If ProbA reduces to ProbB and ProbA cannot be solved
in polynomial time, then ProbA cannot be solved in polynomial time

This one is a bit more tricky to understand, but actually follows directly from the first statement!

Proof. Assume for contradiction that ProbB could be solved in polynomial time. By the prior
statement, ProbA can be solved in polynomial time. This contradicts what we were given, thus
ProbB cannot be solved in polynomial time.
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And now we finally have the tools necessary to prove relative difficulty! We can say that ProbB
is as hard, if not harder than ProbA if ProbA reduces to ProbB. Equivalently, we can say that
ProbA is as easy or easier that ProbB if ProbA reduces to ProbB.

Be careful about the direction here. We will really only consider hardness reductions in
this course, and it is easy to mistakenly reduced the wrong direction. My claim is that you should,
at least for the first handful of problems you solve, walk through the full logic of the reduction rather
than trying to remember the direction you should reduce the two problems. My claim: If you think
through the full logic, the direction should follow from the time complexity analysis reasoning we’ve
developed!

3 Sample Reductions:

3.1 Traveling Salesperson Problem (TSP) and Hamiltonian Cycle

Suppose we believe that Hamiltonian Cycle is a hard problem (and it is!). We’d like to show TSP
is just as hard, if not harder. That is, if we can’t solve Hamiltonian Cycle in polynomial time, we
can’t solve TSP in polynomial time. Before we show this, let’s define the relevant problems:

Problem Statement (TSP).
Input: A completea graph G = (V,E), a cost function c : E → R, and k ∈ Z
Output: TRUE iff there exists a cycle that contains every vertex in V with total cost ≤ k.

aTSP is sometimes formulated as requiring a complete graph, though we can see that this is equivalent to
any other formulation by just setting the cost of edges we don’t want to matter arbitrarily high.

Problem Statement (Hamiltonian Cycle).
Input: A graph G = (V,E)
Output: TRUE iff there exists a simple cycle that contains every vertex in V .

Statement 3. TSP is as hard, if not harder, than Hamiltonian Cycle.

Proof. We reduce Hamiltonian Cycle to TSP. Consider, for a TSP solver TSP, the following algo-
rithm:

function HamCycle((G = (V,E))
Let V ′ = V
Let E′ = {(v, w) | v, w ∈ V, v ̸= w}

Let c(v, w) =

{
1, (v, w) ∈ E

2, otherwise

return TSP(G′ = (V ′, E′), |V |)
end function

First, we show that the conversion runs in polynomial time. This is simple: conversion is
dominated by constructing c and E′, both of which require |V |2 time.

Next, we need to show that HamCycle actually solves the Hamiltonian Cycle problem. To do
this formally, we proceed by cases:
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Case 1: Suppose G does contain a Hamiltonian Cycle. We must show that HamCycle returns
TRUE. That is, we must show G′ contains a TSP Cycle of cost ≤ k. To see that, we consider the
edges of the Hamiltonian Cycle in G once translated to G′. Since G′ is complete, the edges are
present, and since V is unchanged, it is still a cycle that visits every vertex. Now we consider it’s
cost under c: Since the cycle was in G, each of it’s edges has cost 1, and since it’s a cycle containing
each vertex in V , its cost is |V |! Thus TSP(G′, |V |) must return true, as desired!

Case 2: Suppose HamCycle returns TRUE. Then TSP(G′, |V |) must have returned true.
Now consider the cycle the TSP solver found. Since it visits every vertex, it must have ≥ |V |
edges and since edges have cost either 1 or 2, it must contain exactly |V | edges of exactly cost 1.
Therefore, every edge must be in G, and thus we have a a simple cycle that visits every vertex (a
Hamiltonian Cycle!) in G, as desired.

Thus, Hamiltonian Cycle reduces to TSP!

Now, in practice, I will rarely ask for this level of detail and formality in demonstrating the
correctness of a reduction, but I will ask for at least a few sentences justifying why your reduction
is both correct and polynomial time.

3.2 Vertex Cover and Independent Set

Consider the following problems:

Problem Statement (Vertex Cover).
Input: A graph G = (V,E) and k ∈ Z
Output: TRUE iff there exists a subset C ⊆ V with |V | ≤ k such that ∀(v, w) ∈ E, v ∈ C or
w ∈ C.

Problem Statement (Independent Set).
Input: A graph G = (V,E) and k ∈ Z
Output: TRUE iff there exists a subset V ′ ∈ V with |V ′| ≥ k such that ∀v, w ∈ V ′, (v, w) /∈ E.

Make sure you read the notation carefully: A vertex cover is a set of vertices that cover (i.e., is
incident to) each edge in the graph. An independent set is set of vertices such that no pair of vertices
within the set are adjacent. These problems want to determine whether there are sufficiently small
or sufficiently large sets of this sort respectively. One should be able to imagine the optimization
variants of these problem: Find the smallest vertex cover or largest independent set within a graph.

Now to the claim:

Statement 4. Vertex Cover and Independent Set are equally hard.

Note that to show things are equally hard, we’ll have to reduce both directions! Now, luckily,
this isn’t two hard once we realize how to translate between instances of both problems.

By definition, for C to be a set cover of a graph G = (V,E), every edge (v, w) ∈ E must have
either v or w in C. Now consider without loss of generality some arbitrary vertices x, y ∈ V \ C.
Since neither x or y is in C and C is a set cover, we know that (x, y) /∈ E. Thus V \ C is an
independent set! This is a brief proof of the following statement:
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Statement 5. For a graph G = (V,E), C ⊆ V is a set cover iff V \ C is an independent set.

Which, if we consider those set’s sizes, gets us to a corollary:

Corollary 1. For a graph G = (V,E), a set of cover of size k exists iff an independent set of size
|V | − k exists.

And now to our proof of Statement ??:

Proof. Consider the following reductions, where VS, as solution to the Vertex Cover problem,
assumes IS is some solution to the Independent Set problem and vice versa:

function VC(G = (V,E), k)
return IS(G, |V | − k)

end function

and

function IS(G = (V,E), k)
return VC(G, |V | − k)

end function

Correctness of both algorithms follows for Corollary ??, and subtraction can certainly be done
in polynomial time.

3.3 Independent Set and Clique

Consider the Clique problem:

Problem Statement (Clique).
Input: A graph G and k ∈ Z
Output: TRUE iff there exists a subset C ⊆ V with |V | = k such that ∀v, w ∈ C, (v, w) ∈ E

To show this is equivalent to Independent Set, we make another observation about the rela-
tionship between these problems. However, now we have to consider a small transformation of the
graph G:

Consider the complement of G, G = (V,E), where E = {(v, w) | v, w ∈ V, v ̸= w, (v, w) /∈ E}.
This graph has an edge between v, w ∈ V iff no such edge exists in G. Thus, if we have an
independent set of size k in G, it becomes a clique in G! This works in reverse as well: If we have
a clique of size k in G, those vertices form an independent set in G. This is, again, a brief proof of
the following claim:

Statement 6. There is a clique of size k in G iff there is an independent set of size k in G.

Now, one thing left to settle is that the Clique problem asks for a clique of size exactly k, while
Independent Set asks just for an independent set of size ≥ k. This is solved by simply observing
that every subset of a clique is also a clique, so if we have a clique of size > k, we can simply take
a subset of size k that is guaranteed to also be a clique. Thus we can extend this statement to say

Statement 7. There is a clique of size ≥ k in G iff there is an independent set of size ≥ k in G.

Now we get to our big statement:
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Statement 8. Clique and Independent Set are equally hard

Proof. We do this by reducing in both directions. Since we’ve seen this a few times, I’ll be brief.
Consider the following reductions:

function Clique(G = (V,E), k)
E = {(v, w) | v, w ∈ V, v ̸= w, (v, w) /∈ E}
return IS(G = (V,E), k)

end function

and

function IS(G = (V,E), k)
E = {(v, w) | v, w ∈ V, v ̸= w, (v, w) /∈ E}
return Clique(G = (V,E), k)

end function

The conversion involves simply iterating through pairs of edges in V 2, and testing set-membership
(O(1)), so constructing E will take polynomial time.

Correctness for Clique follows from Statement ??. To see correctness for IS, observe that

G = G and apply Statement ??.

4 Satisfiability and Cook-Levin

Up to this point we’ve built a theory of relative difficulty, so we can only talk about problems being
as difficult as others. However, we want to say that problems, in isolation, are hard. Luckily, our
theory of reductions will get us there if we’re able to find at least one problem we can confidently
call hard — that problem is Satisfiability, or SAT.

As I mentioned in the intro, we won’t quite get to where we want to go, but we’ll get pretty
close. a lot of this has to do with re-evaluating what we mean when we say a problem is hard. So
far, we’ve said that easy problems are those that are solvable in polynomial time, but we’ve said
little about what problems we think of as hard. That’ll be formalized in the next section!

4.1 (Boolean) Satisfiability

To understand this problem, we’ll introduce a few terms about boolean formulas:

Def. A Boolean variable x is a variable that can be assigned a value of TRUE/T or FALSE/F.
A literal l is either a boolean variable x , or the negation of a variable x (if x is T, then x is F and
vice versa). A clause C of size k is a disjunction (logical OR) of literals, C = (l1 ∨ l2 ∨ . . . lk).

Def. A Boolean formula ϕ is a combination of ANDs, ORs, and NOTs applied to a set of
Boolean variables. A boolean formula is in conjunctive normal form (CNF) iff it is written as
a conjunction (logical AND) of clauses.

For example, a Boolean formula ϕ over variables x1, x2 can be written like ϕ = (x1 ∧ x2) ∨
(x2 ∨ x1). A CNF boolean formula would instead look something like ϕ = (x1 ∨ x2) ∧ (x2), with
clauses (x1 ∨ x2) and (x2), and using literals x1, x2, and x2.

For our purposes, it’s also useful to keep in mind a result from formal logic about CNF:

Statement 9. Every Boolean formula is logically equivalent to some Boolean formula in CNF.
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Actually converting between CNF and non-CNF formulas is not of interest to us here, but
knowing we can convert will be useful in understanding how the satisfiability problem is defined.
Now we’re finally ready to define what the problem is about:

Def. A boolean formula ϕ over a set of variables V is satisfiable iff there exists an assignment of
T and F to the variables in V such that ϕ evaluates to true.

For example, if we have ϕ = (x1 ∨ x2)∧ (x2), then the assignment x1 = T and x2 = F will have
ϕ = T . Thus, x1 = T and x2 = F is a satisfying assignment, and ϕ is satisfiable. However, not
every boolean formula is satisfiable: Consider ϕ = x1 ∧ x1 — no assignment of T or F to x1 will
have ϕ = T !

Now to the satisfiability problem:

Problem Statement (Boolean Satisfiability/SAT).
Input: A set of variables V and a set C of clauses over V
Output: TRUE iff there is an assignment of T or F to variables in V such that at least one
literal is true in each clause in C.

This is a strange formulation until you realize that this is just a reflection of the way in which
we encode a Boolean formula. Since every Boolean formula is equivalent to one in CNF, we can
represent our formula as a set of clauses. Since a formula in CNF is a logical AND over clauses,
we need every clause to evaluate to true. In this problem, we represent clauses as sets of literals,
and since a clause is a logical OR, at least one of literals needs to be true for the clause to be true.
Thus, we arrive at “at least one literal in each clause in C is true” meaning that the corresponding
Boolean formula in CNF evaluates to T.

We can simplify what’s happening conceptually by formulating SAT as follows:

Problem Statement (Boolean Satisfiability/SAT — Alternative).
Input: A set of variables V and a CNF Boolean formula ϕ
Output: TRUE iff there is an assignment of T or F to variables in V such that ϕ = T .

but by convention, the first is the more common framing (and easier to work with when reducing
to other problems) and so we’ll stick to it.

Here is where learning about CNF helps: Since every boolean formula can be written in CNF,
we’re essentially able to test the satisfiability of boolean formulas generally!

We introduce SAT partially because it’s interesting in it’s own right, but mostly because it is,
for historical reasons, THE hard problem in complexity theory. Now, we haven’t yet formalized
our notion of hardness, but for now, trust that SAT is hard.

4.2 3-SAT

Since SAT itself is kind-of hard to work with, we introduce a simpler variant that is just as hard:
3-SAT.

Problem Statement (3-SAT).
Input: A set of variables V and a set C of clauses of size 3 over V
Output: TRUE iff there is an assignment of T or F to variables in V such that at least one
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literal is true in each clause in C.

Note that 3-SAT seems, on it’s face, easier. Certainly, restricting the input to clauses of exactly
size 3 can’t make the problem hard. And, additionally, reducing 3-SAT to SAT is trivial, since
every instance of 3-SAT is just an instance of SAT. However, we will claim that they are actually
equally difficult: If we can solve 3-SAT fast, we can solve SAT fast.

Statement 10. SAT and 3-SAT are equally hard.

Proof. We will, for brevity, only reduce SAT to 3-SAT here. Additionally, I’ll present a common
shorthand for proofs with SAT: I’ll show you how to convert each clause of SAT into a (bounded)
set of clauses in 3-SAT that are satisfiable iff the original clause is satisfiable.

Consider an instance of SAT with variables V and clauses C. We will construct a set of size-3
clauses C ′ over variables V ′ that are equivalent in terms of satisfiability. Let Ci = {z1, . . . , zk} ∈ C
be an arbitrary clause of size k. We can construct an equivalently satisfiable set of clauses of size
3 as follows: First, add k − 3 variables x1, . . . , xk−3 ∈ V ′. The consider the following k − 2 size-3
clauses

C ′
i = {c′i,1 = { z1, z2, x1},

c′i,2 = { x1, z3, x2},
. . .

c′i,j+1 = { xj , zj+2, xj+1},
. . .

c′i,k−2 = { xk−3, zk−1, zi}}

We claim that this is equivalent in satisfiability to Ci. That is, if Ci is satisfied, then C ′
i is

satisfied, and if Ci is not satisfied, then neither is C ′
i. We’ll show both.

Case 1: Suppose we we have an assignment that doesn’t satisfy Ci. That means each literal
zi = F . We must show that no assignment to our new variables xi can satisfy C ′

i. Suppose for
contradiction that there were some assignment to each xi that made each clause in C ′

i true. Let’s
see what that assignment is via induction:

Lemma 1.
Assume zi = F for all zi ∈ V . For 1 ≤ j ≤ k − 3, c′i,j = T iff xj = F .

Base Case: In the first clause, z1 = z2 = F , so x1 = F to make x1 = T .
Inductive Step: Assume via our inductive hypothesis that if c′i,j = T then xj = F for

1 ≤ j ≤ k. We will show to make c′i,k+1 = T we need xk+1 = T .
Consider c′i,k+1 = {xk+1, zk+2, xk+2}. Since zk+1 = F via our assumption that Ci isn’t satisfied

and xi = F via our IH, this clause is satisfied iff xk+2 = F , as desired.
Case 2: For this side, we assume that at least one zi = T (i.e., Ci is satisfied) and must show

that there is a satisfying assignment w.r.t. xis that satisfies C
′
i. I’ll provide a sketch of where things

are different, construct the assignment, and leave it as an exercise for you to show that it does, in
fact, constitute a satisfying assignment.

Let zj′ be the smallest j′ such that zj′ = T . Note that our inductive argument from the other
case applies up until we reach ci,j′−1. At that point, we can set xj′−1 = T while maintaining the
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truth of the clause. From there, we see that by setting xj = T for all j ≥ j′, the rest of the clauses
will be true via the first literal. Thus we have a satisfying assignment

xj =

{
F, j < j′ − 1

T, j ≥ j′ − 1

Thus, the set of size-3 clauses C ′
i and the clause of size-k Ci are equivalent in terms of satisfiability

— one is satisfiable iff the other is.
Our reduction goes as follows:

function SAT(V , C)
C ′ = ∅
for Ci ∈ C do

Let k be the number of literals in Ci

Construct the k − 2 clauses of C ′
i as above.

V ′ ← V ∪ {xi}1≤i≤k−3

C ′ = C ′ ∪ C ′
i

end for
return 3SAT(V ′, C ′)

end function

To see that the conversion runs in polynomial time, consider the following: We construct O(k)
clauses and variables at each step — linear w.r.t. to the number of literals in C! We do this w.r.t.
the number of clauses in C, so it’s certainly polynomial time w.r.t. the length of C.

Correctness follows from the equivalence in satisfiability between each Ci and C ′
i - one is satis-

fiable iff the other is. Thus, all Ci in C are satisfiable iff all the clauses in each C ′
i, gathered in C ′

are.

4.3 Summary

Now we have a fairly straightforward, if vague, theory of the hardness of algorithmic problems. If
we accept SAT to be hard, then a reduction from SAT to any other problem ProbA proves that
that ProbA is also hard. We also have a method of showing problems are easy/tractable: If we
can find a polynomial-time algorithm to solve ProbA, then ProbA is easy. This can also be done
implicitly via a reduction from ProbA to a known easy problem ProbB.

But what is the relationship between our polynomial-time formalization of easy and our “SAT
reduces to this” definition of hard? Why do we think of SAT as hard anyway? The next section
moves us into the more formal space of complexity theory to get some answers!

5 P, NP, and NP-Completeness

Just like we defined time complexity classes like O(n), O(n log n) and so on, we’ll define complexity
classes for problems.

5.1 Class P

First, for easy problems:
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Def (Complexity Class P). A problem ProbA∈P iff there exists an algorithm that solves ProbA
in worst-case O(nk) time for some k ∈ Z.

This is what we’ve been working with so far, just now with a name — class P ! We won’t spend
much time on this, since this is downstream from everything we’ve done so far in the course.

What’s more interesting is how we formalize hardness! But first, a tangent: Why not define
hardness as P? The answer is simple — because that’s not a super interesting way of defining
hardness. Why? Because the number of interesting problems we can show are in P is quite limited.1

So, we seek other candidate classes of hard problems...

5.2 Class NP and NP-HARD/NP-COMPLETE

Now another tangent: Consider the class of problems whose solutions you can verify TRUE in
polynomial time! That is, if given an instance of a decision problem (i.e., the input to a decision
problem), does there exist some object that can act as a certificate of output to the decision
problem, such that verifying the output is TRUE with the certificate takes polynomial time. Here
it is formally:

Def (Verifier). A Verifier V of a problem ProbA is an algorithm that takes as input an instance
of ProbA X and a certificate c such that ∃c such that V(X, c) = TRUE iff the output of ProbA
for X is TRUE. A verifier runs in polynomial time if it runs in polynomial time w.r.t. the size of
X.

However, understanding what verifiability means is easier if we look at an example. Consider
the following problem:

Problem Statement (Composite).
Input: An x ∈ Z+

Output: TRUE iff x is a composite number.

Recall that a composite number is just a number that has a non-trivial factor (i.e., ∃k ∈ N, k ̸=
1, x such that k divides x).

Suppose someone came up to you and claimed that some large integer x is composite. A naive
approach to verifying this would be to loop through every integer between 2 and x − 1 and see if
they divide x — this takes Ω(x) time, which is exponential w.r.t. n = ⌈log2 x⌉2. However, if they
provided you with one of the non-trivial factors of x, we need only check whether the factor they
provided is legitimate! Even a naive divisibility test like long division runs in polynomial time w.r.t
n! Now, here’s the last critical idea: Suppose they give you a false factor of x. Does this mean that
x isn’t composite? NO! Just that the person hasn’t shown that x is composite. If any such factor
of x exists, then x is composite, we just haven’t been given it yet.

This is the idea underlying verification: We can verify the solution to the problem fast if we
have access to a good certificate. Having a good certificate gives us certainty that the TRUE answer

1However, it would be misleading to suggest that P contains no useful problems — for example, determining
whether there is a winning strategy in a generalized version of chess, checkers, or Go is known to take at least
exponential time w.r.t. the size of the board.

2We conventionally think of the size of an integer input as the length of it’s binary representation. If you haven’t
taken Computer Systems yet, wait until then to figure out why that length is O(log2 n)
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to our decision problem is correct. However, being given a bad certificate only lets us conclude that
the certificate is bad, not that the answer is FALSE.

Now, lets consider the verifier for the Composite problem:

function CompositeVerifier(x, c)
Check c is an integer 2 ≤ c ≤ x− 1
if c divides x then

return TRUE
end if
return FALSE

end function

And we can confirm that all of the steps in the pseudocode can be done in polynomial time w.r.t.
n = ⌈log x⌉.

Another thing to pull from the Composite Problem is the idea that some things that are easy
to verify are hard to solve in polynomial time!3 This motivates the idea that looking at the class of
things that are verifiable in polynomial time is of interest! In fact, this is the class that we call NP:

Def (Complexity Class NP). A problem ProbA ∈NP iff there exists a polynomial-time verifier for
ProbA.

Now we finally get to the million-dollar question4: Is P = NP? That is, are all problems
verifiable in polynomial time solvable in polynomial time? This is the P vs. NP problem!

This is hopefully a philosophically interesting question! It might seem intuitive that problems
we can verify quickly permit quick solutions, but as of right now, we don’t know! Additionally,
many interesting and practically useful problems happen to be in NP, so the class NP is of practical
interest!

Now, here is a quick check of your understanding of the definitions of P and NP. Is P ⊆ NP?
This should be an immediate yes!

Statement 11. P ⊆ NP

The idea: Just ignore C and verify whether the answer is true by solving it yourself in polynomial
time!

Proof. Let ProbA ∈ P . Thus there exists some algorithm A that solves ProbA in polynomial
time. Then consider the following verifier for ProbA:

function AVerifier(X, c)
return A(X)

end function

It runs in polynomial time w.r.t. X, since A runs in polynomial time w.r.t. X. If the answer
to instance X is TRUE, then A(X) will return true and any c can act as a certificate. The same
goes in reverse: No c will have AVerifier return true if the answer to instance X is FALSE.

3In actuality, the Composite problem is solvable in polynomial time, but the algorithm relies on some pretty
advanced number theory — The AKS primality test wasn’t found until 2002! On the other hand, showing the
Composite problem is verifiable in polynomial time requires no mathematical knowledge beyond the definition of a
composite number.

4Literally — see the corresponding Millenium Prize problem
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This leaves us with a bit of a problem: NP cannot be our class containing hard problems,
because it contains all of our known easy problems as well! What we are actually aiming for are
the hardest problems in class NP. Of course, we know how to determine relative difficulty! This
gives us two new complexity classes:

Def (Complexity ClassNP-HARD). A problemProbA∈NP-HARD iff for every problemProbB∈NP,
ProbB reduces to ProbA in polynomial time.

Def (Complexity ClassNP-COMPLETE). A problemProbA∈NP-COMPLETE iff ProbA∈NP
and is NP-HARD.

A bit less formally, NP-HARD consists of all problems as hard or harder than every problem in
NP, and NP-COMPLETE contains all problems that are NP-HARD and also in NP.

We are going to use these two classes as our formalization of our idea of a hard problem. The
reason I use both classes here is that, for our purposes, every problem we talk about is going to
be NP-COMPLETE, and thus NP-HARD. Occasionally, the distinction will become relevant, but
only because I’ll ask you to demonstrate that a new problem is within class NP.

You might initially be worried because it might seem hard to show that anything is NP-HARD.
How do you show that EVERY problem in NP reduces to a single problem? This is a fair concern,
and we won’t have the tools in this course to demonstrate how this is done (for that, take a
theory of computation course!). It is worth noting that proving that there is an NP-COMPLETE
problem is a major result in the field — the Cook-Levin Theorem. What problem did they show is
NP-COMPLETE? None other than SAT!

Theorem 5.1 (Cook-Levin).
SAT is NP-COMPLETE.

Now, once we know one NP-COMPLETE problem, showing other problems are NP-HARD is
much more doable — simply reduce SAT to that problem!

Statement 12. If SAT reduces to some problem ProbA, then ProbA is NP-HARD.

Proof. By the Cook-Levin Thm, SAT is NP-COMPLETE. Thus, for any arbitrary problemProbB∈NP,
there exists a reduction from that problem to SAT. Let B2SAT represent the function that converts
a problem instance X of ProbB to an instance (V,C) of SAT.

Then note that since we are given a reduction from SAT to ProbA. Let SAT2A represent the
function that converts a problem instance (V,C) of SAT to an instance Y of ProbA.

Construct a reduction from ProbB to ProbA as follows, for some algorithm A that solves
ProbA:

function B(X)
return A(SAT2A(B2SAT(X)))

end function

It is a polynomial-time reduction because SAT2A and B2SAT are both polynomial time. It’s
correctness follows from the correctness of the two conversions.

In fact, this idea of just chaining problem instance conversions can be used to show a much
more general claim:

Statement 13. If ProbA reduces to ProbB, and ProbB reduces to ProbC, then ProbA reduces
to ProbC. That is, reduction is transitive.
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What kind of object does the problem deal with?

Are you looking for sets of vertices or edges?

Vertex Cover/Clique/Independent Set Hamiltonian Cycle/Path

3-SAT Subset Sum

integer setsvariablesgraphs

vertices edges

Figure 1: How to determine what problem to reduce from.

and give us our most useful tool:

Corollary 2. If ProbA reduces to ProbB and ProbA is NP-HARD, then ProbB is NP-HARD.

This is how we will practically show a problem is hard — we will reduce a known NP-HARD
problem to the problem of interest, demonstrating that it is also NP-HARD! This is, of course,
what we’ve already been doing: We’ve shown 3-SAT is NP-HARD via our prior reduction! We just
didn’t have the term for it yet!

5.3 Practically proving HARDness

Now, reducing from 3-SAT/SAT to a graph problem or a integer set problem is annoying. What is
more useful in this class is to reduce from known NP-HARD problems that are similar in spirit to
the problem of interest. Specifically, you want to reduce from very simple problems with a similar
spirit. Are you dealing with a problem that is looking for a subset of the vertices in a graph?
Consider reducing from Clique or Vertex Cover. How about if you’re looking at a subset of edges?
Consider Hamiltonian Path. If you are dealing with finding good assignments to variables, consider
actually working with 3-SAT! this advice is summarized in Figure ??.
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