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1 Why Proofs of Correctness

• So far, we’ve been pretty informal about our algorithms being right

– Sometimes we do this through testing! Other times we trust our intuition.

– We spent a lot of time talking about how to formally show how fast our algorithms are,
so it’s probably important to show that our algorithms are correct as well.

– This will become more important as our algorithms get more and more complex. Our
intuitions may fail us!

• To prove algorithms are correct, we can often rely on some tools you picked up in Discrete
Math. The most important such tool is mathematical induction.

2 Loop Invariants and Induction

• Consider Insertion Sort (Alg. 1):

Algorithm 1 Insertion sort, but more condensed than before

function InsertionSort(Array A)
for i← 2 to N do

j ← i
while j > 1 and A[j] < A[j − 1] do

swap(A[j], A[j − 1])
j ← j − 1

end while
end for

end function

• Remind yourself of how insertion sort works: at the beginning of the kth iteration of the
outer loop, A[1...k− 1] is sorted, and A[k] may be out of place. After the kth iteration, we’ve
inserted the value at A[k] (through the while loop) into it’s correct position, and so A[1...k]
is sorted.
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– The insertion of insertion sort happens in the inner while loop — we swap until what
began at A[K] is at A[j], which should be it’s correct position.

• Let’s also talk about problem specification: What is it that a sorting algorithm must do?

– In general, a sorting algorithm takes as input an array A and returns an array A′ that
is sorted and contains the same elements as A.

– The version of insertion sort I’ve given you here is specific kind of sort called an in-place
sort where in practice, we return nothing and simply modify A such that at the end
of the algorithm, A is sorted. For simplicity, let’s call A at the start of our in-place
sort B and A at the end of our in-place sort B′. We need to prove that B′ is sorted
(B[1] ≤ B[2] ≤ · · · ≤ B[N ]) and that B and B′ contain the same elements (Formally,
that e ∈ B′ if and only if e ∈ B)

– Given that insertion sort can only swap the positions of elements in the array it manip-
ulates, it’s not possible for B and B′ to contain different elements! This is both simpler
and less interesting to show than the fact that insertion sort properly orders the elements
in A, so we’ll just leave the proof as a sketch:

∗ Show that swapping 2 elements does not introduce new elements or remove elements
(If e ∈ A before a swap, e ∈ A after. If e /∈ A before a swap, e /∈ A after).

∗ Then, if we’re being really rigorous, prove by induction that no number of swaps
will ever violate this property.

– This leaves us to show that B′ (i.e., A at the end of insertion sort) is sorted.

• Now here is our general strategy for proving iterative algorithms correct:

1. Find a Loop Invariant: A statement that we will prove is true after every iteration of
a loop in our algorithm.

(a) Often this will be in terms of the index of the loop, as we’ll see for insertion sort.

2. Then we’ll prove the loop invariant to be true by induction.

(a) Our base case will typically be showing that our invariant is true before the first
iteration of the loop. People sometimes refer to this as as the initialization step,
I’ll try to use the base case/inductive step to make the connection to mathematical
induction clear.

(b) Our inductive step (which I may sometimes call the recursive case, and what, in
the context of loop invariants, is called the maintainance step) will show that if the
invariant is true at the end of the last iteration, it’ll be true at the end of the next
iteration.

3. We then must show that if the loop invariant is true, our algorithm returns the correct
answer after the last iteration. This is sometimes referred to as the termination step.

• For Insertion Sort, our loop invariant comes from our observation that after the iteration of
the outer loop where i = k, the A[1...i] is sorted.

• We can concoct a general structure for our proof by observing the following facts:
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1. Proving our base case is simple: before the loop starts (say, with i = 1, since our loop
starts with i = 2), A[i] consists of a single element, and is thus trivially sorted (trivial
in the sense that a single item is always sorted!). All of the rest of our work will involve
the inductive step.

2. At the end of each iteration, we know the while loop has terminated. This means that
one of the two termination conditions was reached (i.e., the condition for continuing the
loop was false).

That is, either j = 1, or A[j − 1] ≤ A[j].

If j = 1, we don’t get much useful info... we still need to prove A[1...i] will be sorted by
the end of the loop. However, we can restate this as A[j..i], since j = 1, which will be
helpful later.

If A[j − 1] ≤ A[j], we have a useful inequality to use later!

3. Third, we can observe that at the end of each run of our while loop, j is decremented.
Before that, A[j] and A[j − 1] have been swapped, so looking at the value of j after
the loop ends, we change the positions of elements A[j] and A[j + 1]. In fact, since our
loop is decrementing, the only elements that could have been modified within the while
loop are elements with index ≥ j!. This means that A[1...j − 1] are untouched from the
beginning of the loop. Since we assume that A[1...k] is sorted at the beginning of the
loop where i = k+1 (this is our inductive hypothesis! ), if A[1...j− 1] is untouched, then
they should remain sorted after the loop!

• Now, let’s think a bit about what it means for an array to be sorted. We will say that A[1...N ]
is sorted when

A[1] ≤ A[2] ≤ · · · ≤ A[N ]

And thus for some 1 ≤ j ≤ N , we can write this as

A[1] ≤ A[2] ≤ . . . A[j − 1] ≤ A[j] ≤ · · · ≤ A[N ]

From Fact 3, we can observe that at the end of the ith iteration A[1...j − 1] must be sorted!
That is

A[1] ≤ A[2] ≤ · · · ≤ A[j − 1]

From Fact 2, if we ended up in the case where A[j − 1] ≤ A[j], we can go further and tack
this inequality onto the chain!

A[1] ≤ A[2] ≤ · · · ≤ A[j − 1] ≤ A[j]

This is great! This is a good chunk of our loop invariant! What’s remaining is showing that
A[j..i] is also sorted. That is, we need to show
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A[j] ≤ · · · ≤ A[i]

These are specifically the indices that our while loop has been swapping! So what’s left to
prove is that our while loop does what it says it does: put the element that starts at index i
into it’s correct position without breaking the sorted order.

• With the structure of the larger proof coming together, it seems like we’ll need to construct
and prove a lemma (a smaller claim that will help us prove the correctness of our algorithm)
along the way. Since the while loop is another loop, we might also want to prove this lemma
by induction!

• Now, let’s present the full proof in it’s formal glory. Though this will hide some of the intu-
itions that let us get to this final proof structure, this format will make it more straightforward
to verify the correctness of the statements involved! Pay careful attention to how the lemma
is proven to see another example of a proof by induction.

2.1 Proof of Correctness: Insertion Sort

Lemma (While loop): After each iteration of the while loop, A[j . . . i] is sorted. That is, assuming
A[j . . . i− 1] begin sorted, after the iteration of the while loop when j = k,

A[k] ≤ A[k + 1] ≤ . . . A[i]

Proof: We’ll show this by (bounded) induction, for iterations where 1 ≤ j ≤ i.
Base Case: Assume j = i (as j is initialized in the algorithm). A[j . . . i] is simply A[i], and,

again, an array of length 1 is always sorted!
Inductive Step: Assume that after the iteration where we end with j = k, A[k . . . i] is sorted.

We must show that after the iteration where j = k − 1 (i.e., after 1 more step!), A[k − 1 . . . i] is
sorted.1

Now, we start reasoning about our code. If we begin a loop with j = k − 1, three things can
happen:

Case 1: We break out of the loop because j = k = 1. 2 Remember that we decrement j as the last
step of our loop, and we measure our loop iterations at the end of each loop, so j = k for the
condition checking!

If this is true, then we’re at the bound of our bounded induction! We now know, by our
inductive assumption, that A[1 . . . i] is sorted, and we need to induct no further!

Case 2: We break out of the loop because A[k] ≮ A[k − 1].

This is equivalent to saying A[k − 1] ≤ A[k]. By our inductive assumption, we know

1Note that we’re working backwards here, counting down from i toward 1. This lets us follow the indices of the
loop directly!

2I’ve been saying that breaking out of the loop because j ≯ 1 means j = 1. Strictly speaking, j ≯ i is equivalent
to j ≤ 1. why can’t we break out because j < 1? (think about how j gets smaller each loop!)
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A[k] ≤ · · · ≤ A[i]

and so tacking on another inequality to the front gives us

A[k − 1] ≤ A[k] ≤ . . . A[i]

which is equivalent to saying A[k-1. . . i] is sorted. This is what we sought to prove, so we’re
done in this case!

Case 3: We don’t break out of the loop and continue for another iteration. This tells us that A[k−1] >
A[k] (otherwise, we would have been in case 2!). However, the first line of our while loop swaps
the positions of A[k] and A[k−1]. Thus, since A[k−1] > A[k] before the swap, A[k−1] < A[k]
after the swap! For the sake of our definition of sorting, we can weaken this inequality: If
A[k − 1] < A[k], A[k − 1] ≤ A[k]. From here, we’d like to proceed like in case 2: By our
inductive assumption, we know

A[k] ≤ · · · ≤ A[i]

and we just saw that A[k − 1] ≤ A[k], so we really want to tack on the new inequality to the
chain and see

A[k − 1] ≤ A[k] ≤ · · · ≤ A[i]

which is equivalent to saying A[k − 1 . . . i] is sorted, as we set out to prove.

However, this isn’t quite right, because the A[k] in our IH is not the same as the A[k] in the
inequality we find by swapping, since the value of A[k] changed during our code’s execution!
It may be helpful to develop notation to clarify this (We’ll use A′ to refer to A after the loop,
or something similar).

So are we stuck? Not really! We can actually show that new A′[k] (what began the loop as
A[k−1]) must be less than or equal to A′[k+1] based on the assumption that before entering
the while loop, A[1 . . . k] (which will follow from the IH of our loop invariant for the outer for
loop). The idea is that since A′[k] and A′[k + 1] will never have their relative order changed
by the swaps, they will remain in order. Formally that looks something like this:

Loop Invariant: If A[1 . . . i− 1] is sorted, before the iteration that ends with j = k,

A[1] ≤ A[2] ≤ . . . A[j − 2] ≤ A[j − 1] ≤ A[j + 1] ≤ · · · ≤ A[i]

A[1] ≤ A[2] ≤ . . . A[j] ≤ A[j + 1] ≤ · · · ≤ A[i]

Pf.: By induction over 1 ≤ j ≤ i

Base Case: Let j = i. Before this iteration, nothing has run in the loop, and the statement
follows from our assumption.
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Inductive Step: Assume that A[1] ≤ · · · ≤ A[j− 1] ≤ A[j+1] ≤ · · · ≤ A[i] at the beginning
of the prior iteration. We then swap A[j] and A[j − 1], so at the end of the iteration, index j
contains the elements that was previously at index j − 1], so we have

A[1] ≤ A[2] · · · ≤ A[j − 2] ≤ A[j] ≤ A[j + 1] ≤ · · · ≤ A[i]

Then j decrements, so after the decrement (and at the beginning of the next iteration, we
renumber our indicies to get

A[1] ≤ A[2] ≤ . . . A[j − 1] ≤ A[j + 1] ≤ A[j + 2] ≤ · · · ≤ A[i]

which is what we need to show. □

Using that fact, we have the last missing inequality (A′[k] ≤ A′[k + 1]), and we finish this
case.

It’s also worth observing that the other line of the while loop will decrement j, so j = k − 1
now, so this is the iteration we intended (i.e., the iteration where we end with j = k − 1 has
A[k−1 . . . i] sorted. Dealing with this kind of indexing specificity can get annoying, but I like
to make sure I don’t get an off-by-one error by checking these abstract, general statements
against concrete examples — the nice thing is that if you mess this up, you mess this up for
most non-trivial cases, so it’s easy to catch and fix!

Thus, by this bounded induction argument, we can conclude that when the while loop ends with
some 1 ≤ j ≤ i, we know A[j . . . i] is sorted!

Now we move to the main proof:
Statement (Loop invariant for InsertionSort): After the iteration where i = k in the outer

for-loop of insertion sort, A[1 . . . k] is sorted. That is,

A[1] ≤ A[2] ≤ · · · ≤ A[k]

Base Case: Before the first iteration of the loop, i = 1. Observe that A[1 . . . 1] = [A[1]] and
again our (sub)array is trivially sorted, since it’s an array with 1 item in it, so we’re done.

Inductive Step: Assume that after the iteration where i = k, A[1 . . . k] is sorted. Again, this
means

A[1] ≤ A[2] ≤ · · · ≤ A[k]

We must show that after the iteration where i = k+ 1, A[1 . . . k+ 1] is sorted (I won’t expand this
one out!).

Now, we know that at the end of this iteration, the while loop has stopped. As we saw in the
lemma’s proof, we know this means either:

1. j = 1, which means, by our lemma, A[1 . . . i] is sorted. Since this is the iteration where
i = k + 1, this tells us A[1 . . . k + 1] is sorted, which is our goal. We’re done!
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2. A[j] ≮ A[j − 1], which is equivalent to saying A[j − 1] ≤ A[j].

Now we make one more observation: We know j > 1, and we know that, after each iteration
of the loop, the only changes we make to our array are the swaps, which only occur for
positions j or greater (where here j refers to the value of j after the while loop terminates).
This means that A[1 . . . j − 1] are unchanged from the beginning of our loop. But, by our
inductive assumption, A[1 . . . k] are sorted, and j ≤ i = k + 1, j − 1 ≤ k. All this means is
that A[1 . . . j−1] is unchanged from the beginning of the loop and was a contiguous subarray
of the portion of the array that, by our inductive assumption, began the iteration sorted ! We
can then conclude that A[1 . . . j − 1] must be sorted at the end of the iteration. Now let’s
piece everything we know together.

We just showed that since the beginning of the array is unaffected by the while loop,

A[1] ≤ · · · ≤ A[j − 1]

and since we’re in the case where we exit the while loop because A[j] ≮ A[j − 1], we know

A[j − 1] ≤ A[j]

And by our lemma (which, as a reminder, uses our inductive assumption!), we know that
since we finished an iteration of the while loop,

A[j] ≤ · · · ≤ A[k + 1]

If we stick these all together we get...

A[1] ≤ · · · ≤ A[j − 1] ≤ A[j] ≤ · · · ≤ A[k + 1]

A[1] ≤ · · · ≤ A[K = 1]

which is equivalent to saying A[1 . . . k+1]. Since this is what we set out to prove, we’re done!

So, we’re shown that in all cases, assuming A[1 . . . k] at the beginning of the iteration where
i = k + 1 means that A[1 . . . k + 1] is sorted at the end. Combined with our base case, have
proven our loop invariant.

All that’s left to say is that because of our loop invariant, after the Nth iteration, we know
A[1 . . . N ] is sorted. That’s the entire array (we assume N is the length of A), so we can
conclude that insertion sort works!

2.2 Some Comments (on writing these kinds of proofs)

• Keep in mind that the proof I showed you is meant to a both a model proof as well as a
teaching example. That means I try to be much more detailed than I would otherwise be
(and much more detailed than I expect the proofs you write to be).

• As far as evaluation of proofs goes, the part that’s most important to me is your understanding
of the proof technique.

– Did you choose a reasonable loop invariant?

– Is the base case you choose reasonable?

7



– Do you understand how an inductive step works (the inductive assumption, what you
need to prove, etc.)?

– Are you reasoning about the execution of pseudocode appropriately (you know branching
logic sets up different cases to prove, you make sensible judgements about what properties
certain operations preserve or change)?

– Can you formalize claims about code into mathematical statements you can manipulate
(i.e., knowing that a list being sorted means A[1] ≤ · · · ≤ A[N ])?

• What I care the least about (but still care a little about!) is you’re ability to perform algebraic
manipulations on the fly. You’ll see a handful of tricks in examples (they show up a lot more
in Big-Oh proofs than correctness!), but what’s much more important is internalizing the
structure of the arguments we make. You’ll see later on that certain proof techniques lend
themselves to algorithms constructed with certain design principles.

• Also of note is the fact that in any timed situation, the things I ask you to prove will be much
simpler than this proof of insertion sort.

• A small secret is the fact that proofs I ask you to write will often look similar to proofs I show
you in lecture. In the rare cases that the technique is something new, I’ll give you plenty of
time to work through it in a homework assignment, using techniques similar to those you’ve
seen in an example.

3 Induction for Recursive Algorithms

• Luckily, mathematical induction lends itself much better to proving recursive algorithms cor-
rect than iterative algorithms.3

• Whether you’re writing a recursive function or an inductive proof, you worry about a base
case (which, hopefully, is something easy to prove), and then we either write a recursive case
or prove an inductive step. The reason I might sometimes refer to the inductive step of a
proof as the recursive case is because they are pretty much the same thing!

• Check out the following proof for Binary Search, which will let us pull out strong induction.

3.1 Proof of Correctness: Binary Search

• First, let’s specify what correctness means here. A search algorithm takes in an Array A and
an target element e and returns an index i such that A[i] == e if e ∈ A, or NULL otherwise.

– Since this is BinarySearch, we have an additional assumption: It only works if A is
sorted! We can’t escape talking about sorting, unfortunately.

• This means that we need to prove two things (we love breaking things into cases!)

1. If the algorithm returns index i: We must show A[i] == e

3This is not unrelated to the fact that functional programming languages are often used in formal verification,
an area of CS where you build programs that generate proofs that a piece of code is correct according to a set of
specifications. If this sounds cool, check out Coq/Gallina
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function BinarySearch(Array A, Target e)
if N == 0 then

return NULL
end if
midpoint← ⌈N2 ⌉
if A[midpoint] == e then

return midpoint
else if e < A[midpoint] then

return BinarySearch(A[1 . . .midpoint− 1], e)
else

return midpoint + BinarySearch(A[midpoint+ 1 . . . N ], e)
end if

end function

2. If the algorithm returns NULL: We must show e /∈ A.

Okay — Let’s prove correctness by induction directly(no loop invariants or any other tricks!).
First, let’s establish that we are going to use strong induction over the size of the Array, N . We
do this because we realize that the recursive calls are always on smaller arrays (but not arrays of
length N − 1, so weak induction is not enough).

Base Case: We are going to prove that this algorithm returns the correct answer for arrays of
size 0.

Again, this is easy, but strange: An empty array cannot contain e, so we should always return
NULL. This happens, because if N = 0, we immediately enter the the first conditional and return
NULL. We’re done!

Inductive Step/Recursive Case: Now things get a little messy, because we have a lot of
cases. These cases, thankfully, can be determined relatively easily: They’re the cases of the if-elif-
else block!

First, let’s be clear about what our inductive assumption is: BinarySearch(A′, e) will return
the correct answer as long as A′ is sorted and the length of A, N ′, is less than N . Note that this
is by strong induction, so this is true for all N ′ < N , and we must show this holds for N .

So either

1. A[midpoint] == e. Here, we immediately return midpoint. What we need to show is exactly
what we assume in this case: A[midpoint] == e, so we’re done!

2. e < A[midpoint]. Here, we have a few things to show. We enter the else if case, and
immediately return BinarySearch(A[1 . . .midpoint− 1], e).

First, note that midpoint− 1 < N , and thus the length of the array argument is smaller than
N . Then note that A[1 . . .midpoint− 1] is sorted, because it’s just a contiguous subarray of
A, which is sorted by assumption. We can write this out in more detail by observing that A
being sorted means

A[1] ≤ · · · ≤ A[midpoint− 1] ≤ · · · ≤ A[N ]

which implies
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A[1] ≤ · · · ≤ A[midpoint− 1]

which is the same as saying A[1 . . .midpoint−1] is sorted. This means that the array argument
to this recursive call has length < N and is sorted, which means by our inductive assumption,
means that the answer returned is correct! But here’s where things get annoying (but not
tricky), because there are two cases :

(a) The call returns NULL: Since the recursive call is guaranteed to be correct, this means
that e /∈ A[1 . . .midpoint− 1]. Since this call also returns NULL, we need to show that
e /∈ A[midpoint . . . N ].

Thankfully we have some tools. Because we’re in case 2, we know that e < A[midpoint].
Further, we know that A is sorted, so

A[midpoint] ≤ A[midpoint+ 1] ≤ · · · ≤ A[N ]

If e < A[midpoint] ≤ . . . A[N ], we know e < A[k] for all midpoint ≤ k ≤ N , which means
that e ̸= A[k] for all midpoint ≤ k ≤ N (strict inequalities are nice!). This implies that
e /∈ A[midpoint . . . N ], and with our inductive assumption from earlier, we can conclude
e /∈ A[1 . . . N ], and confirm that returning NULL was the right call!

(b) The call returns some index i. This means that for B = A[1 . . .midpoint], B[i] == e by
our strong inductive assumption (a smaller call is always correct!).

Of course, since the ith element of B is the ith element of A (we just swapped notation
to B to avoid messy notation!), this implies that A[i] == e, which is exactly what we
need to show.

And that covers all subcases of case 2.

3. A[midpoint] ̸= e and e ≮ A[midpoint]: Note that in the else case, you always know the other
conditions are false, since you would have been in that other case if they were true! First,
we can see that the two facts we know can combine to show e > A[midpoint]. If we’re not
smaller or equal, we’re greater!

From here on out, this case should look like a perfect mirror of case 2.

By our inductive assumption, we know our call to BinarySearch returns the right answer,
so two cases:

(a) The call returns NULL: We thus know e /∈ A[midpoint+1 . . . N ]. We also know in this
case that e > A[midpoint], and since A is sorted, we know

A[1] ≤ · · · ≤ A[midpoint]

And we can thus conclude that

e > A[midpoint] ≥ A[midpoint− 1] ≥ · · · ≥ A[1]

And thus e /∈ A[1 . . .midpoint]. Thus e /∈ A, and we return NULL correctly.4

4To be entirely clear, we assume midpoint+NULL is NULL. One of the nice parts of writing in pseudocode is
that we can trust a reader’s intuition to know that returning a number plus NULL should return NULL. Depending
on your programming language, a compiler may not like something like this.
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(b) The call returns some index i: We now know for B = A[midpoint+1 . . . N ], B[i] == e. B
is simply A with the first midpoint elements removed, so we know B[i] == A[midpoint+
i], and since the call is guaranteed to be correct by strong induction, we know

B[i] == A[midpoint+ i] == e

The second half of this equality is exactly what we need to show in order to demonstrate,
since we return midpoint+ i. We’re done with this case!

Now we’ve handled all 3 cases of the inductive step (which we can verify because those are the
only places where we return a value), and can conclude, by strong induction, that for sorted
arrays of length N ≥ 0, BinarySearch is correct!

4 A Closing Note

The most difficult thing about proving the correctness of algorithms is turning your intuitions about
how the algorithm works into the formal pieces necessary for a certain proof technique. I always
recommend beginning by informally convincing yourself that the algorithm works, and inspecting
why you think that is.

• If you can write working code (which you can — you can’t pass COMP128 without!), you
have intuitions about how and why code works.

• You also passed Discrete Math, which means that you’re comfortable with the kinds of math-
ematical reasoning we’ll be using (mainly induction!).

• You just need to bridge the gap between those two things. The just in that sentence should
not mislead you though — this is hard. It’s perfectly normal for things to seem a little
overwhelming at first, but the way to overcome that thoughtful practice and a willingness to
challenge yourself!
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