
Dynamic Programming: Edit Distance, Subset-Sum, and

CKY Parsing

Suhas Arehalli

COMP221 - Spring 2025

Oftentimes, we can structure a problem as a recurrence relation, where we characterize the
solution to one instance of the problem in terms of one or more solutions to smaller instances of
the problem, where these smaller instances move closer towards some easy to solve base cases.

In the past, we’ve presented how these kinds of problems can be solved by Divide-and-Conquer
algorithms. However, these solutions can sometimes be extraordinarily slow because some recursive
calls in distinct recursion paths are solving the exact same problem instance — an instance of
wasted work! This situation, often referred to as an instance of overlapping subproblems, can
be solved by enforcing a rule where every instance of the problem is only solved a single time. The
first time you solve a problem, you store the answer in memory so that later on you can simply
look up the solution rather than solve that instance again.

This technique of trading off memory to save computation time, called caching or memoiza-
tion, is enough to solve the overlapping subproblem problem, but this technique often allows for a
very efficient iterative (as opposed to recursive) solution. This design technique — caching and an
iterative solution — is called Dynamic Programming.

To find a Dynamic Programming solution, I recommend the following steps:

1. Develop a recurrence relation for the problem. It may be helpful to think about the problem
in terms of a sequential decision process.

2. Confirm that there are overlapping subproblems. If there are, pursue dynamic programming.
Otherwise, a simpler Divide-and-Conquer algorithm will suffice!

3. Design the Dynamic Programming Table (the data structure storing answered to solved sub-
problems) and determine an iteration order through subproblems that ensures that you can
replace all recursive calls with DP table lookups.

The best way to practice this design technique is to study a number of examples. As a result,
the rest of this document outlines a number of sample problems from Skiena with the above 3 steps.

1 Edit Distance

We define the edit distance between two strings s and t as the minimum number of insertions,
deletions, and substitutions needed to transform s to t.
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Recurrence Relation

Model the process of determining the edit distance as determining the sequence of edits needed to
match each character of the string. To match the first character of t by modifying s, we have a
couple of options:

1. If s1 and t1 match, then we can simply match them and figure out how to match the rest of
the string.

2. Otherwise, we can

• We can insert t1 into the first position of s and match the inserted t1 with t1 in t.

• We can delete s1 and try to match the rest.

• We can substitute t1 for s1 and then match.

Which option is right? We don’t select just one! We simply work through each possibility and
select the best (minimum) one! That gets us to:

d(s1 . . . sn, t1 . . . tm) =


d(s2 . . . sn, t2 . . . tm), s1 = t1
1 + min(d(s2 . . . sn, t1 . . . tm),

d(s1 . . . sn, t2 . . . tm),
d(s2 . . . sn, t2 . . . tm))

s1 ̸= t1

max(n,m) n = 0 or m = 0

Overlapping Subproblems?

Observe the following (truncated) tree expanding the recurrence relation above. One of the over-
lapping subproblems is highlighted in red.

d(s1 . . . , t1 . . . )

d(s2 . . . , t2 . . . )

. . .

d(s1 . . . , t2 . . . )

. . .

d(s2 . . . , t1 . . . )

d(s3 . . . , t2 . . . )d(s2 . . . , t2 . . . )d(s3 . . . , t1 . . . )

The DP Table and Iteration Order

Note that the space of relevant problem instances involves selecting the first index of each string.
That is, we need solutions to each d(si . . . sn, tj . . . tm) for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ m+ 1. Thus,
we build a table D[i, j] for each of these inputs.

Observe that, from the recurrence relation, we know that in order to solve the instance d(si . . . sn, t1 . . . tm),
we need to know the solutions to d(si+1 . . . sn, tj . . . tm), d(si . . . sn, tj+1 . . . tm), d(si+1 . . . sn, tj+1 . . . tm).
That is, to fill in D[i, j], we need elements D[i + 1, j], D[i, j + 1], and D[i + 1, j + 1] to be filled.
We can also fill in D[n+ 1, ·] and D[·,m+ 1], corresponding to an empty string in either position,
using the base case!

This leads us to an algorithm that fills in the table in an order that respects those dependencies.
If we iterate through the i’s first, then the j’s, we get the following pseudocode.
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function EditDistance(s1 . . . sn, t1 . . . tm)
Let A[i, j] be an array for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ m+ 1
for i← 1 to m+ 1 do

A[n+ 1, i]← m+ 1− i
A[i,m+ 1]← n+ 1− i

end for
for i← n to 1 do

for j ← m to 1 do
if si = tj then A[i, j] = A[i+ 1, j + 1]
end if
A[i, j]← 1 + min(A[i+ 1, j], A[i, j + 1], A[i+ 1, j + 1])

end for
end for
return A[1, 1]

end function

2 Subset Sum

Given a multi-set S = {s1, . . . sn} ⊆ Z+ of size n and k ∈ Z+, subset sum asks you to determine
whether there exists a multiset S′ ⊆ S such that

∑
s∈S′ s = k.

Recurrence Relation

We frame this as a sequential decision problem, where step i involves determining whether si should
be included in the multi-set. This gets us to the following recurrence relation:

f({s1, . . . sn}, k) =


T, n = 0, k = 0

F, n = 0, k ̸= 0

f({s2, . . . , sn}, k) | f({s2, . . . , sn}, k − s1), otherwise

i.e., we either make k or k − s1 with all elements except s1.

Overlapping Subproblems?

Consider the case where we have a multi-set where s1 = s2
f({s1, . . . sn}, k)

f({s2, . . . sn}, k)

f({s3, . . . sn}, k)f({s3, . . . sn}, k − s2)

f({s2, . . . sn}, k − s1)

f({s3, . . . sn}, k − s1)f({s3, . . . sn}, k − s1 − s2)

In this case, we have overlapping subproblems due to possible values of elements in S leading
to the same value of the parameter k across different recursive branches. For some small instances,
it may be that no elements overlap! However, the fact that subproblems may overlap gives us a
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strategy to bound the number of possible values of the second parameter! No matter what the
values are, they are bound from above by the initial k and from below by 0 (due to our base cases!).

The DP Table and Iteration Order

A naive solution would build a table A of size |C|×(k+1) where A[i, j] stores the return value of the
call to f({si, . . . sn}, j). We then see a dependency between f({si, . . . sn}, k) and f({si+1, . . . sn}, k)
and f({si+1, . . . sn}, k− si). Since we don’t know in advance what value si will take, we must make
sure all possible values of si will have the corresponding call cached in advance! Translating this
logic to our table, we have that, to fill in A[i, j], we need A[i+1, j] to be filled, as well as A[i+1, j′]
for all 0 ≤ j′ < j. This gets us the following iteration order

function SubsetSum({s1, . . . , sn}, k)
Let A[i, j] be an array for 1 ≤ i ≤ n+ 1 and 0 ≤ j ≤ k with A[n+ 1, . . . ]← F
A[n+ 1, 0]← T
for i← n to 1 do

for j ← k to 0 do
if j − si ≥ 0 then

A[i, j]← A[i+ 1, j] | A[i+ 1, j − si]
else

A[i, j]← A[i+ 1, j]
end if

end for
end for
Return A[1, k]

end function

Now a clever reader might notice that we don’t actually need to store most of the table! Consider
the following reduced table!

function SubsetSum({s1, . . . , sn}, k)
Let A[j] be an array for 0 ≤ j ≤ k with A[. . . ]← F
A[0]← T
for i← n to 1 do

for j ← k to 0 do
if j − si ≥ 0 then

A[j]← A[j] | A[j − si]
end if

end for
end for
return A[k]

end function

So we get O(k) space rather than O(nk)!

3 CKY Parsing

Here, the background is a bit more involved.
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A Context-Free Grammar (CFG) consists of a set of rules R, a set of variables V , a set of
terminal symbols Σ, and a start symbol S ∈ V , such that a string of terminal symbols w ∈ Σ∗

is said to be in the grammar (or grammatical w.r.t. that grammar) if we can apply a sequence of
rules to go from S to w.

A fun fact about CFGs is that they can be written in Chomsky Normal Form, or CNF. This
requires that each rule is of one of three forms. We have unary rules, (A → α) ∈ R, which allows
you to replace a variable A ∈ V with a terminal α ∈ Σ, and binary rules, (A → BC) ∈ R, which
allows you to replace a variable A with two variables B followed by C. The third kind of rule allows
for empty strings: You can have (S → ε) ∈ R, which allows the start symbol to be replaced with
the empty string ε.

Critically, we just need to understand the mechanics of parsing with grammars — we can label
a terminal symbol α ∈ Σ with the variable A ∈ V if the rule (A→ α) ∈ R. If we see two adjacent
chunks of a string that we’ve given the labels B and C, we can label the chunk containing both
of them with the label A if (A → BC) ∈ R. The string is in the grammar if we can assign the
entire thing the label S. These three ideas let us build a recurrence relation, and subsequently a
DP algorithm.

Recurrence Relation

Note here a small strategy we’ve used to write this recurrence relation. Rather than asking if a
string is labeled with an S, we let the potential variable label be a parameter. To allow us to build
a recurrence relation, we generalize the problem we’re trying to solve!

So for a string w = w1 . . . wn...

cky(w1 . . . wn, A) =


T, n = 1, (A→ w1) ∈ R

F, n = 1, (A→ w1) /∈ R∨
1≤i≤n−1

∨
(A→BC)∈R(cky(w1 . . . wi, B) ∧ cky(wi+1 . . . wn, C)), otherwise

This seems tricky, but the otherwise case is a fairly straightforward (though not simple!) trans-
lation of the logic of parsing to a formula. We ask: Is there a way to split w into two pieces (say, at
some index i) such that for some rule (A→ BC) such that the first piece can be parsed as the first
symbol in the rule’s right-hand side (i.e., cky(w1 . . . wi, B)) and the second piece can be parsed as
the second symbol in the RHS (cky(wi+1 . . . wn, C))? If so, we can parse w as the symbol A. This
is the logic of a CFG parsing1, and we are simply encoding that logic as a formula using logical ors
(∨) and ands (∧).

Overlapping Subproblems?

The DP Table and Iteration Order

Note that in order to cover all possible recursive calls, we need to store the answer to cky(wi . . . wj , A)
for every choice of start index 1 ≤ i ≤ n, end index 1 ≤ j ≤ n and variable A ∈ R. This gives us a
3-dimensional table! Here, we conventionally represent the 3D table in two dimensions by simply
listing in each cell all values of A for which the call to cky returns T .

1Technically, this is the logic of bottom-up CFG parsing, one of a couple of parsing strategies for CFGs
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From there, we have to think about dependencies between different problem instances to deter-
mine the iteration order. To solve the instance cky(wi . . . wj , A), we need to know cky(wi . . . wk, B)
and cky(wk+1 . . . wj , C) for all i ≤ k ≤ j−1 and all B,C ∈ V . These are pretty stringent conditions!
Translating that to our table format, for our 2D table, to fill T [i, j] we’d need to know T [i, k] and
T [k + 1, j] for all 1 ≤ k ≤ j − 1. This requires moving through the table relatively carefully!

One (of many) possible ways to navigate through the table is to observe that the main diagonal
(T [i, i] for all i) constitutes our base cases, and by moving one off the diagonal (T [i, i + 1] for
reasonable i), we have all of the dependencies we need. Thus, we can slowly move ourselves from
the diagonal toward T [1, n], which gives us our answer (if S ∈ T [1, n], the sentence is grammatical!).
Thus we have the following pseudocode:

function CKY(G = (V,Σ, R, S), w = w1 . . . wn)
Let T [i, j] be an array for 0 ≤ i, j ≤ n with T [. . . , . . . ]← ∅
for i← 1 to n do

for (A→ α) ∈ R do
if wi = α then

T [i, i]← T [i, i] ∪ {A}
end if

end for
end for
for d← 1 to n do ▷ This is your offset from the diagonal/length of the substring - 1

for i← 1 to n− d do
j ← i+ d
for k ← 1 to j − 1 do

for (A→ BC) ∈ R do
if B ∈ T [i, k] and C ∈ T [k + 1, j] then

T [i, j]← T [i, j] ∪ {A}
end if

end for
end for

end for
end for
return S ∈ A[1, n]

end function

As far as analysis goes, we can observe that we have an algorithm with time complexity O(n3|R|)
and space complexity O(n2|V |).
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