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Divide and Conquer

A new algorithmic design strategy!
Idea: We keep seeing that small instances of a problem are almost trivially solvable

— This is what we see in the base case of a lot of our proofs by induction!

— What if we can transform large instances of a problem into multiple smaller,
easier-to-solve instances of that problem. We can keep breaking down that large
problem (recursively) until we arrive at trivial version of that problem!

If we can find a way to break a problem down into problems of half the size, it only takes a
logarithmic amount of steps to get to a trivial problem size (i.e., n some small constant like
0or1).

Divide and Conquer is a very powerful design principle, and we’ll spend an entire unit (After
the exam!) talking about it! Consider this a taste!

Designing Mergesort

MergeSort is one application of the divide and conquer design strategy to the problem of
sorting.

Idea: If I split my list into two halves and sorted both, would that make sorting the full list
easier?
— Yes! You can interleave two sorted lists together in linear time! (MERGCE in Alg. [I)).

— Just look at the front of each list and take the smaller one, and you’ll get all of the
elements in order!

— This MERGE operation is O(n).
Then all that’s left is building the recursive structure:

— Lists of length 0 or 1 are trivially sorted, so they can be our base cases.

— In the recursive case, we can split our list into two halves, and thus for a problem of size
n, we have to solve two problems of size 5! After these recursive calls, we can merge the
results together and return the merged array.



e We can see the final algorithm in Alg. [1| (borrowed from your HW1!).

Algorithm 1 Pseudocode for MergeSort

function MERGESORT(Array A)
if N <1 then
return A
end if
midpoint + [5]
L <+ MERGESORT(A[L...midpoint])
R + MERGESORT(A[midpoint + 1...N])
return MERGE(L, R, N)
end function

function MERGE(Array L, Array R, Int N)
C + Array[l...N]
141
j+1
for k< 1to N do
if L[i] < R[j] or j out-of-bounds in R then
C[k] + LJ3]
1 1+1
else (or i out-of-bounds in L)
C[k] < R[j]
j—j+1
end if
end for
return C
end function

3 Proof of Correctness

: We’ll proceed in two steps: First, proving that our MERGE algorithm is correct, and then using
that to prove MERGESORT is correct.

3.1 Merge

Since this is an iterative algorithm, we’ll use a loop invariant to help us prove correctness by
induction. I recommend attempting to prove the algorithm’s correctness yourself before reading
the full section so you can check your work!

This algorithm’s goal is to take in two sorted arrays and merge them into a single sorted array,
so keep in mind that we can always assume that L and R are sorted (we’ll simply observe that L
and R are not manipulated, so they will always remain sorted).

First, we have to determine our loop invariant. We should first observe that after every iteration,
the loop will find the minimum element in L[i...] and R[j...] (the “unsorted” part of our Array,



if we think about this like our ©(n?) sorts). This means the contents of C' should always be smaller
than the unsorted portion! And, of course, our goal is to slowly construct a sorted C, and since we
add 1 element to C' at C[k] each iteration, we probably also want to say something about C1... k]
being sorted. Thus...

Loop Invariant: Assume L and R are sorted. After the iteration where k = [, e; < eg,
Ve e C[1...1]l,ea€ L[i...]lJR[j...] AND C[1...1] is sorted.

Base Case: Before the first loop, we want to have k one less than in the first iteration (to
match a hypothetical initialization step), so we have k = 0. C[1...0] is empty and thus trivially
sorted and (trivially) all O elements are less than the elements in L and R.

Inductive Step: By our inductive hypothesis, we can assume that after the loop where k =1,
elements in C[1...[] are less than or equal to elements in L[¢...]|JR[j...] and C[1...I] are sorted.
We must show that after the step where k =1 + 1, elements in C[1...l + 1] are less than or equal
to elements in Li...]|JR[j...] and C[1...]] and C[1...1+ 1] are sorted.

Note that, for the sake of not shuffling too many variable/constant names around, we’ll refer to
the values of ¢ and j at the end of the k = [ iteration as i;, j; and the values of the variable after
the k =1+ 1 iteration as 4;41, ji+1-

Due to the if-else conditional, We will claim (and show!) that C[l + 1] = min(L[4], R[j])
(assuming we choose the existing value if one index is out-of-bounds). To see this, we just assess
the cases corresponding to the if-else:

Case 1: We enter the if-statement, and we know that either R[j;] doesn’t exist (j; is out of bounds)
or L[i;] < R[j;]. In this case, we assign L[i;] to C[l + 1], as desired.

Case 2: We enter the else, which means that either L[i;] doesn’t exist or R[j;] < L[i;]. Either way, we
want C[i + 1] = R][j;], which is exactly what we do!

This means that...
Cll+1] < L[y <Llij+1] <--- < L[N/2]
Cll+1 < R[] < Lljii+1] < -+ < R[N/2]

The first inequality in each sequence comes from our minimum claim above, and the rest come
from the fact that L and R are sorted by assumption!

Those inequalities together tell us that C[l + 1] < ey, Yes € Lii;...[|JR[ji - ..]. Now we simply
note that C[1...!] has not been changed in the loop, so Ve; € C[1...1], we also know e; < eg, Vey €
Lli;...]JUR[j; - - .]- Together, this tells us that e; < ez, Vey € C[1...1+1],ea € L{iy...]UR[j1-- -]

which can get us to the slightly weaker ey < ey, Ve; € C[1...14+ 1],e2 € Llij41 ... ]UR[Ji4+1---]
that we need for half of our loop invariantﬂ

To get the other half, we first observe again that C[l + 1] = min(L[i;], R[j]), and then note
that, by our inductive assumption, elements in C[1...[] are less than or equal to elements in
Lli;...]JUR[jr--.]- Since C[l] is in C[1...1] and both L[i;] and R[i] are in L[i; ... [JR[ji .. .], we
know that C[I] < C[l + 1]. But we also know from our inductive assumption that C[1...![] started
sorted, and does not change in the iteration where ¢ = [+ 1! Thus we can conclude that C[1...[+1]
is sorted, and we have the other half of our loop invariant.

IThis is an exercise in reading mathematical notation more than it a complicated argument. It might be neater
if we adopt some nicer notation (i.e., let Uy = L[i; ... ]UR[j; .- .])-



We then can conclude that after the last iteration where k = N that C[1...N] is sorted (we
actually only need the other half of our loop invariant for the inductive step!). As per usual, I'm
going to be a little sloppy by not proving that C' contains all and only the values in L and R, but
that should be fairly straightforward to show — the sorted-ness is the tricky part!

3.2 MergeSort

Note that this is a recursive algorithm, so we can proceed directly by induction. Like BINARY-
SEARCH, we can see that the recursive calls are half the size of the original call, so we need to use
strong induction.

Base Case: Suppose N = 0 or 1. In this case, we enter the first conditional and return A.
Since every array of size 0 or 1 is sorted, we’re done.

Recursive Case: Our inductive hypothesis will let us assume that MERGESORT(A) is correct
for all A with 0 < N < K. We must show that MERGESORT(A) is correct for A with N = k.

Because of our inductive hypothesis, we know that L and R contain all of the elements of
A[l...midpoint] and A[midpoint + 1...N] respectively in sorted order. Since we proved the
correctness of MERGE in the previous section, we can assume that what we return is an array that
contains all and only the elements of L and R in sorted order, which is exactly all and only the
elements of A in sorted order. This is exactly our definition of correctness for sorting!

4 Runtime Analysis

e The general strategy for proving the time complexities of recursive functions like MERGESORT
is through finding recurrence relations — equations that tell us how the time complexity of
one call to the function can be writen in terms of the time complexities of it’s recursive calls.

e In the next few weeks, we'll be seeing the Master Theorem, a mathematical result that can
solve these recurrence relations effectively. But we’ll hold off on that!

e For now, let’s just consider two more informal ways of looking at the time complexity of
MERGESORT.

4.1 How many Merges?

We can gain some intution for the ©(nlogn) behavior of MERGESORT by realizing that the domi-
nant time sink in every call to MERGESORT is the MERGE. Thus, if we track the total asymptotic
cost of MERGE through all of our recursive calls, we have a good picture of the cost of MERGESORT.

It should be fairly straightforward to show that MERGE is ©(n), so I'll leave that as an exercise.

In our initial call, we will MERGE the full array of size n. In each of our two recursive calls, we
will MERGE two subarrays of size §. In the recursive calls from those recursive calls (let’s call them
depth 2 recursive calls!), we will MERGE four subarrays of size %. This pattern continues! recursive
calls of depth k will consist of 28 MERGEs of size 5+ 1f we look carefully, this is about ©(n) worth
of work at each depth! How deep do we need to recurse before we hit the base case? Since, at each
level we half the size of each recursive call, there will only be ©(logn) levels of depth! Thus our
time is ©(nlogn). Figure 4.4 of Skiena is a helpful visual!



4.2 Analyzing a Recurrence

Let T'(n) be the number of assignments to the array C' in MERGE during MERGESORT for an input
of length n. There are n in the call to MERGE, plus the two recursive calls on inputs of size 7.
That means

- 4T(% +2n
A little bit of fiddling with substitutions might let us see that this is, after k£ substitutions,

T(n) = QkT(%) +kn

So let k = logn and we get

T(n)=nT(1) +nlogn

And since the base case of recursion runs in constant time, we can see that this is ©(nlogn)!
We’ll return to this approach with a bit more formality when we discuss the Master Theorem.
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