Time Complexity and Big-Oh

COMP221 - Suhas Arehalli
Spring 2024

1 The RAM Model

e Our Goal: Formalizing what we know about algorithms

— We can use heuristics and tricks to get at Big-Os — that’s what we did in COMP128!

— Here we want to build up the big-O & time complexity machinery we use from the basics!
o Our First Step: Building the RAM (Random Access Machine) Model

— This is a simplification of a real computer.

— the simplicity allows us to do analyses that are relatively language and hardware inde-
pendent!

— This model says that

1. Simple operations (math, comparisons, local assignments, etc.) are 1 time step.

2. loops and method calls are composite operations. We have to break them down
into a sequence of simpler operations.

3. Memory accesses are always 1 time step.
— Remember that these are technically *wrong*, if we’re talking about real computers

1. Additions and Multiplications are both simple operations under RAM, but multi-
plications, in practice, take longer on real CPUs!

2. Loops and Method calls you write in a high-level programming language are often
optimized by compilers in unintuitive ways!

3. In modern computers, memory access speeds are fairly complicated due to caching
and paging! Think about temporal and spatial locality and caching hierarchies if
you’ve taken COMP240!

— Despite being wrong, this model is very useful in practice!®
e Example:
Consider a Linear Search algorithm (Alg. 1).
If we run LINEARSEARCH([3, -1, 2, 12, 6], 2), we can use the RAM model to count steps:

IThis is an oblique reference to a famous quote by statistician George E.P. Box: “All models are wrong, but some
are useful.” The quote itself first appeared Box (1979; Robustness in the strategy of scientific model building), but
the idea behind it appeared in Box (1976; Science and Statistics). A big and important idea!

Algorithm 1 A simple linear search algorithm

function LINEARSEARCH(Array A, Target e)
for index <+ 1 to N do
x + Alindex)]
if e == x then
return index
end if
end for
return NULL
end function

index < 1

T+ 3

x == e?. Falsel
index < 2

T+ —1

x == e?. Falsel!
index < 3
T2

© 0N oA N

xz == e?. True!

,_.
e

return index (2!)
So for this instance of the problem, our algorithm solves it in 10 time steps.

e This is still strange. We want to think about algorithms in general, not just their behavior
on particular instances of the problem they solve.

— The issue? We can only count the number of steps on a particular instance, and it’s
unreasonable to think about every possible instance.

— Our Solution? We will think in terms of Best-Case, Worst-Case, or Average-Case time
complexities for problems of a particular size.

— We have to consider problem size because larger problems (i.e., a larger array to search

through) will take longer to solve, but some array/target pairs take longer to find than
others, even if both arrays have length n!

e In general, we will case about the worst-case analysis.

— Why? We want to prepare for the worst! Terrible algorithms may look good if we
only look at their best-case behavior.

— Example:
If we consider the the best case for this algorithm, we see that running CONSTANTSEARCH*([5,7,2],

5) will return a correct answer in 1 time step! However, if we look at it’s worst case, we
have to worry about more than just time complexity...

Algorithm 2 A not-so-good search algorithm

function CONSTANTSEARCH™*(Array A, Target e)

return 1

end function

2

Big-O(h)
With the RAM model, we can start to construct growth functions

— A function f(n) that tells us how many time steps an algorithm takes to execute for a
problem of size n in the worst/best/average-case.

But growth functions are too precise, and difficult to work with.

Our goal: Be lazy (avoid dealing the with precision of growth functions), but avoid being
sloppy

— We want to make sure we preserve distinctions we care about, and avoid being bogged
down by details we don’t care about.

— To do this, we’ll construct a formalism (Big-Oh) that preserves the things we care about.
What do we care about?

1. Upper and lower bounds in terms of nice functions
2. Behavior “in the limit” (as n — 00)

3. Greater than linear scale (i.e., making our time steps k times as fast)
This leads directly to Big-Oh notation
— Big-0: f(n) € O(g(n)) if and only if 3¢ > 0, ng such that
f(n) <c-g(n),¥n = ng
— Big-Q: f(n) € Q(g(n)) if and only if 3¢ > 0,n¢ such that
f(n) >c-g(n),vn > ng

— Big-0: f(n) € O(g(n)) if and only f(n) € O(n) and f(n) € Q(n).

Note: The definition of Big-© here differs from that of the textbook (which defines it in
terms of ¢y, c2, ng, and some inequalities! However, with a small trick, you can prove that my
definition here and the one in the textbook are equivalent (remember when proving things
are equivalent, you need to show that assuming either definition will let you derive the other.
One direction is straightforward, the other requires the trick!).

Think of Big-O saying that some multiple of g is an upper bound of f for sufficiently large n.
Big-Q2 is the same, but with a lower bound!

e [said that we wanted to only talk about nice functions. Since Big-Oh notation lets us talk
in terms of g(n)s rather than f(n)s, we should try and pick nice functions as our g(n)s when
we prove Big-Ohs.

— What are nice functions? From fast-growing to slow, we have:
n!>2" > n® > n’>nlogn > n>logn > 1

— Section 2.10 in Skiena has fancier, less nice growth functions that can show up in time
complexity analysis, but for this class these should suffice.

¢ Example:

Consider this insertion sort algorithm (Alg. 3).

Algorithm 3 An insertion sort algorithm.

function INSERTIONSORT(Array A)
for i < 2 to N do
j1
z Alj]
y < Alj —1]
while j > 1 and z <y do
Aljl <y
Alj—1l«+z=z
Jeig—-1
x <+ Alj]
y <« Alj —1]
end while
end for
end function

Step through the algorithm to help you understand how this algorithm works. We’ll prove
it’s correctness later.

Roughly counting time steps...

There are 5 times steps that execute within the while loop, and 3 time steps (two comparisons
and a logical and!) to check the while loop’s condition. So that’s 8 steps per loop.

How many times will the while loop loop? In general we don’t know!. But we do know, in the
worst-case, it will run 7 — 1 times (consider the case where the ith element is smaller than all
elements to it’s left.

Before the while loop, but within the for loop, we have 3 time steps worth of operations.
That means that the ith iteration of the for loop will take 8(¢ — 1) + 3 time steps. So the full

algorithm will take...

fn)=> (8(i—1)+3)=> (8i—5)
=2 =2
:Siy—ip
=2 =2
:8(@,1),5(71,1)

=4n’ +4n—8 —5n+5

=4n? —n -3

And so we have our growth function for insertion sort under our RAM model!

Now, your COMP128 intuitions should tell you that this algorithm should be O(n?). In fact,
it should be ©(n?) (often what we wanted to talk about when we said Big-O in COMP128
was actually Big-O!). Lets prove that to be true.

To prove that insertion sort is O(n?), we need to show f(n) € O(n?), which, by definition, is
equivalent to showing that for some c, ng, for all n > ny,

f(n) < c-g(n)
4n2—n73§cn2
0<(c—4)n*+n+3

Now for a small trick: Since we only care about inequalities, we can swap this complex
quadratic function for a simpler one! Since

(c—4)n?>+n+3>(c—4)n’+n

We can show

(c—4)n*+n>0
(c=4Hn+1>0
(c—4)n> -1
assuming n > 0 (i.e., choose ng > 0, say, ng = 1), If we choose ¢ > 4 (say, ¢ = 5), we can
convince ourselves that (n — 4)n? +n > 0.

Now, to put the trick into place: consider the following inequalities:

(c—4)n?*+n+3>(c—4)n*+n>0

We’ve shown the first half (since adding 3 can only make something larger), and we saw earlier
that choosing ¢ = 5, ng = 1 allows us to show the second. This, cutting out the middleman,
we show

(c—4)n*+n+3>0
Which we showed above was equivalent to f(n) € O(n?), by definition. Thus, insertion sort
is O(n?)
To show f(n) € Q(n?), we can do something similar. Plugging in f and g into the definition
of Big-Q2, we find that we need to show that for some ¢ > 0 and ng, for all n > ngq

f(n) = c-g(n)
an?—n-3 > en?
0>(c—4)n*+n+3
Our intuition here should be that we should pick a ¢ < 4 (say, 3) here, so the n? term is

negative and we can get this polynomial below 0. We can also apply a variation on the trick
used for Big-O: if n > 1, then 3n > 3! As a result, we can set up the series of inequalities:

Y

(c—4n*+n+3n>(c—4)n*+n+3

0
0>(c—4)n*+4n> (c—4)n*+n+3

Y]

So we only need to show that...

0> -—n?+4n
0>-—n+4
n>4

This is true if we choose ng > 4, thus with ¢ = 3, ng = 8, f(n) € Q(n?)!
Finally, since f(n) € O(n?) and f(n) € Q(n?), f(n) € O(n?) by (my) definition!

To write out a formal proof for this, you should do the scratch work I've just shown you first,
and then take some time to rewrite: start with your choice of ¢ and ng and demonstrate that
the inequalities hold, knowing all of the values of the variables.

This process is long, and often involves algebraic tricks. Though you should know how to
prove big-O(h) time complexities from the ¢, ng-definitions you saw above, in practice these
problems can become easier if we pull out more powerful mathematical tools like the limit.

— Big-O: f(n) € O(g(n)) if and only if

(i.e., the limit exists)

— Big-Q: f(n) € O(g(n)) if and only if
f(n)

lim —= >0

e Your intuitions should be as follows:

— If f grows faster than g, the ratio of f to g will grow without bound as n — co. By this
definition, f(n) € O(g(n)) when this doesn’t happen (i.e., when f grows roughly the
same speed or slower than g!).

— Similarly, if g grows faster than f, the ratio of f to g will tend toward 0 (the denominator
of this fraction gets larger and larger!). If f(n) € Q(g(n)) under this definition, this
cannot be true, and thus f grows as fast or faster than g.

¢ Example:
(Skiena 2-11b)

5

f(n) =2n* —3n% 4+ 7
=n

Under the ¢, ng-definition, we’d have to do some sneaky algebraic tricks or do some fancy
reasoning about the behavior of quintic polynomials. But with limits, we simply evaluate

. f(n) 2nt —3n% + 7
lim —= =
n—o00 g(n) n— 00 n5
. 2 3 7
= (-t
2
= lim — — lim — + lim ls
n—oo N, n—oo M, n—oo N,
=0-0+0

Since 0 < oo, f(n) € O(n®). But 0 # 0, so f(n) ¢ Q(n®), and thus f(n) ¢ O(n°).

e Note: Limits are not a part of the formal prerequisites of this course, and so I’ll never ask you
to use the limit definition (though I may ask you to use the ¢, no-definition!). There may be
some points later in the course where I'll simply ask you to prove a particular growth function
has a certain big-Oh time complexity, and in those cases I'll allow the limit definition.

e Note 2: Proving that this definition is equivalent to the other is unfortunately outside of the
scope of the course. Aspiring mathematicians can take a shot at it after taking Analysis!

